Mechanisms of Cancer Cell Radioresistance: Modern Trends and Research Prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Radiation therapy holds a key position in the arsenal of cancer treatment methods. This non-invasive technique has been actively used for several decades and has demonstrated high effectiveness in combating various types of malignant tumors. Despite significant advancements in ionizing radiation delivery technologies and the introduction of targeted radiosensitizing drugs and immunotherapy, classical radiation therapy faces limitations related to the radioresistance of tumor cells. This resistance is caused by numerous factors, such as genetic mutations, the metabolic characteristics of cancer cells, their ability to repair DNA, the presence of a tumor microenvironment, and many others. Tumor radioresistance reduces the success of treatment, making it necessary to explore new approaches to enhance the effectiveness of radiation therapy. This review discusses the main principles of radiation therapy and the properties of cancer cells that affect their radiosensitivity. It examines both existing methods for overcoming the radioresistance of cancer cells and prospects for further development, which could significantly improve the effectiveness of cancer treatment.

About the authors

M. G Sharapov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: sharapov.mg@yandex.ru
Pushchino, Russia

E. E Karmanova

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

S. V Gudkov

Prokhorov General Physics Institute, Russian Academy of Sciences

Moscow, Russia

References

  1. Bray F., Laversanne M., Sung H., Ferlay J., Siegel R. L., Soeijomataram I., and Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 74 (3), 229-263 (2024). doi: 10.3322/caac.21834
  2. Шахзадова А. О., Старинский В. В. и Лисичникова И. В. Состояние онкологической помощи населению России в 2022 году. Сибирский онкол. журн., 22 (5), 5 (2023). doi: 10.21294/1814-4861 -2023-22-5-5-13
  3. Papież M. A. and Krzyściak W. Biological therapies in the treatment of cancer —update and new directions. Int. J. Mol. Sci., 22 (21), 11694 (2021). doi: 10.3390/ijms222111694
  4. Kovalchuk M. V., Deyev S. M., and Sergunova K. A. Targeted nuclear medicine. achievements, challenges and prospects. Nanobiotechnol. Rep., 18 (4), 524-541 (2023). doi: 10.1134/S2635167623700416
  5. Salem A. Hypoxia-targeted dose painting in radiotherapy. Semin. Radiat. Oncol., 33 (3), 298-306 (2023). doi: 10.1016/j.semradonc.2023.03.009
  6. Basu R. and Kopchick J. J. GH and IGF1 in cancer therapy resistance. Endocrine-Related Cancer, 30 (9), e220414 (2023). doi: 10.1530/ERC-22-0414
  7. Ding Y., Ye B., Sun Z., Mao Z. and Wang W. Reactive Oxygen Species-Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. Adv. NanoBiomed Res., 3 (1), 2200077 (2023). doi: 10.1002/anbr.202200077
  8. Guo S., Yao Y., Tang Y., Xin Z., Wu D., Ni C., Huang J., Wei Q. and Zhang T. Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal. Transduct. Target. Ther., 8 (1), 205 (2023). doi: 10.1038/s41392-023-01462-z
  9. Hannon G., Lesch M. L., and Gerber S. A. Harnessing the Immunological Effects of Radiation to Improve Immunotherapies in Cancer. Int. J. Mol. Sci., 24 (8), 7359 (2023). doi: 10.3390/ijms24087359
  10. Zhao Y., Ji Z., Li J., Zhang S., Wu C., Zhang R., and Guo Z. Growth hormone associated with treatment efficacy of immune checkpoint inhibitors in gastric cancer patients. Front. Oncol., 12, 917313 (2022). doi: 10.3389/fonc.2022.917313
  11. Twomey J. D. and Zhang B. Cancer immunotherapy update: FDA-approved checkpoint inhibitors and companion diagnostics. AAPS J., 23 (2), 39 (2021). doi: 10.1208/s12248-021-00574-0
  12. Locquet M. A., Brahmi M., Blay J. Y., and DutourA. Radiotherapy in bone sarcoma: the quest for better treatment option. BMC Cancer, 23 (1), 742 (2023). doi: 10.1186/s12885-023-11232-3
  13. Porrazzo A., Cassandri M., D’Alessandro A., Morciano P., Rota R., Marampon E, and Cenci G. DNA repair in tumor radioresistance: insights from fruit flies genetics. Cell. Oncol., 47 (3), 717-732 (2024). doi: 10.1007/s13402-023-00906-6
  14. Zhou T., Zhang L. Y., He J. Z., Miao Z. M., Li Y. Y., Zhang Y. M., Liu Z. W., Zhang S. Z., Chen Y., Zhou G. C., and Liu Y. Q. Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front. Immunol., 14, 1133899 (2023). doi: 10.3389/fimmu.2023.1133899
  15. Hao Y., Jiang H., Thapa P., Ding N., Alshahrani A., Fujii J., Toledano M. B., and Wei Q. Critical role of the sulfiredoxinperoxiredoxin IV axis in urethane-induced non-small cell lung cancer. Antioxidants (Base¡), 12 (2), 367 (2023). doi: 10.3390/antiox12020367
  16. Fischer J., Eglinton T. W., Frizelle F. A., and Hampton M. B. Peroxiredoxins in colorectal cancer: predictive biomarkers of radiation response and therapeutic targets to increase radiation sensitivity? Antioxidants, 7 (10), 136 (2018). doi: 10.3390/antiox7100136
  17. Boltman T., Meyer M., and Ekpo O. Diagnostic and therapeutic approaches for glioblastoma and neuroblastoma cancersusingchlorotoxinnanoparticles. Cancers, 15 (13), 3388 (2023). doi: 10.3390/cancers15133388
  18. Li J., Sun Y., Zhao X., Ma Y., Xie Y., Liu S., Hui B., Shi X., Sun X., and Zhang X. Radiation induces IRAK1 expression to promote radioresistance by suppressing autophagic cell death via decreasing the ubiquitination of PRDX1 in gliomacells. Cell Death Dis., 14 (4), 259 (2023). doi: 10.1038/s41419-023-05732-0
  19. Arif M., Nawaz A. F., Mueen H., Rashid E, Hemeg H. A., and Rauf A. Nanotechnology-based radiation therapyto cure cancer and the challenges in its clinical applications. Heliyon, 9 (6), e17252 (2023). doi: 10.1016/j.heliyon.2023.e17252
  20. Becerra V, Ávila M., Jimenez J., Cortes-Sanabria L., Pardo Y., Garin O., Pont A., Alonso J., Cots E, and Ferrer M. Economic evaluation of treatments for patients with localized prostate cancer in Europe: a systematic review. BMC Health Serv. Res., 16, 1-13 (2016). doi: 10.1186/s12913-016-1781-z
  21. Obrador E., Salvador R., Villaescusa J. I., Soriano J. M., Estrela J. M., and Montoro A. Radioprotectionand radiomitigation: from the bench to clinical practice. Biomedicines , 8 (11), 461 (2020). doi: 10.3390/biomedicines8110461
  22. Bruskov V. I., Chernikov A. V., Ivanov V. E., Karmanova E. E., and Gudkov S. V. Formation of the reactive species of oxygen, nitrogen, and carbon dioxide in aqueous solutions under physical impacts. Phys. Wave Phenom., 28, 103-106 (2020). doi: 10.3103/S1541308X2002003X
  23. Nilsson R. and Liu N. A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects. Radiat. Med. Protect., 1 (3), 140-152 (2020). doi: 10.1016/j.radmp.2020.09.002
  24. Sriramulu S., Thoidingjam S., Brown S. L., Siddiqui E, Movsas B., and Nyati S. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed. Pharmacother., 158, 114126 (2023). doi: 10.1016/j.biopha.2022.114126
  25. Gudkov S. V., Guryev E. L., Gapeyev A. B., Sharapov M. G., Bunkin N. E, Shkirin A. V., Zabelina T. S., Glinushkin A. P., Sevost'yanov M. A., Belosludtsev K. N., Chernikov A. V., Bruskov V. I., and Zvyagin A. V. Unmodified hydrated С60 fullerene molecules exhibit antioxidant properties, prevent damage to DNA. and proteins induced by reactive oxygen species and protect mice against injuries caused by radiation-induced oxidative stress. Nanomedicine, 15 (1), 37-46 (2019). doi: 10.1016/j.nano.2018.09.001
  26. Ahire V, Bidakhvidi N. A., Boterberg T., Chaudhary P., Chevalier E, Daems N., Delbart W., Baatout S., Deroose C. M., Fernandez-Palomo C., Franken N. A. P., Gaipl U. S., Geenen L., Heynickx N., Koniarová I., Selvaraj V. K., Levillain H., Michaelidesová A. J., Montoro A., Oei A. L., Penninckx S., Reindl J., Rödel F., Sminia P., Tabury K., Vermeulen K., Viktorsson K., and Waked A. In Radiobiology Textbook, Ed. by S. Baatout (Springer, Cham, 2023), pp. 311-386. doi: 10.1007/978-3-031-18810-7_6
  27. Byun H. K., Kim C., and Seong J. Carbon ion radiotherapy in the treatment of hepatocellular carcinoma. Clin. Mol. Hepatol., 29(4), 945 (2023). doi: 10.3350/cmh.2023.0217
  28. Bradley J. D., Hu C., Komaki R. R, Masters G. A., Blumenschein G. R., Schild S. E., Bogart J. A., Forster K. M., Magliocco A. M., Kavadi V. S., Narayan S., Iyengar P., Robinson C. G., Wynn R. B., Koprowski C. D., Olson M. R., Meng J., Paulus R., Curran W. J. Jr., and Choy H. Long-term results of NRG oncology RTOG 0617: Standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. , 38 (7), 706-714 (2020). doi: 10.1200/JCO.19.01162
  29. Chan. Wah Hak C. M. L., Rullan A., Patin E. C., Pedersen M., Melcher A. A. AND Harrington K. J. Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Front. Oncol., 12, 971959 (2022). doi: 10.3389/fonc.2022.971959
  30. Бычкова Н. М. и Хмелевский Е. В. Современные подходы к лучевой терапии метастатических поражений скелета. Онкология. Ж. им. ПА. Герцена, 8 (4), 295-304 (2019). EDN: XDUALP
  31. Mirestean C. C., Iancu R. I., and Iancu D. P. T. p53 Modulates radiosensitivity in head and neck cancers — from classic to future horizons. Diagnostics (Basel), 12 (12), 3052 (2022). doi: 10.3390/diagnostics12123052
  32. Carpov D., Buigä R., and Nagy V. M. DNA. damage response and potential biomarkers of radiosensitivity in head and neck cancers: clinical implications. Rom. J. Morphol. Embryol., 64 (1), 5—13 (2023). doi: 10.47162/RJME.64.1.01
  33. Slipsager A., Henrichsen S. N., Falkmer U. G., Dybkær K., Belting M., and Poulsen L. 0. Predictive biomarkers in radioresistant rectal cancer: A. systematic review. Crit. Rev. Oncol. Hematol., 186, 103991 (2023). doi: 10.1016/j.critrevonc.2023.103991
  34. Sato K., Shimokawa T., and Imai T. Difference in acquired radioresistance induction between repeated photon and particle irradiation. Front. Oncol., 9, 1213 (2019). doi: 10.3389/fonc.2019.01213
  35. Catton C. N. and Shultz D. B. Should we expand the carbon. ion footprint of prostate cancer? Lancet Oncol., 20 (5), 608—609 (2019). doi: 10.1016/S1470-2045(19)30094-4
  36. Matsumoto Y., Fukumitsu N., Ishikawa H., Nakai K., and Sakurai H. A critical review of radiation therapy: from particle beam therapy (proton, carbon, and BNCT) to beyond. J. Pers. Med., 11 (8), 825 (2021). doi: 10.3390/jpm11080825
  37. Burko P., D'Amico G., Miltykh I., Scalia F., Conway de Macario E., Macario A. J. L., Giglia G., Cappello F., and Caruso Bavisotto C. Molecular pathways implicated in radioresistance of glioblastoma multiforme: what is the role of extracellular vesicles? Int. J. Mol. Sci., 24 (5), 4883 (2023). doi: 10.3390/ijms24054883
  38. Koka K., Verma A., Dwarakanath B. S., and Papineni R. V. L. Technological advancements in external beam radiation therapy (EBRT) : An indispensable tool for cancer treatment. Cancer Manag. Res., 14, 1421—1429 (2022). doi: 10.2147/CMAR.S351744
  39. Wang S., Tang W., Luo H., Jin F., and Wang Y. The role of image-guided radiotherapy in prostate cancer: A systematic review and meta-analysis. Clin. Translat. Radiat. Oncol. , 38, 81—89 (2023). doi: 10.1016/j.ctro.2022.11.001
  40. Xu S., Frakulli R., and Lin Y. Comparison of the Effectiveness of Radiotherapy with 3D-CRT, IMRT, VMAT and PT for Newly Diagnosed Glioblastoma: A Bayesian Network Meta-Analysis. Cancers (Basel), 15 (23), 5698 (2023). doi: 10.3390/cancers15235698
  41. Ebadi N., Li R., Das A., Roy A., Nikos P., and Najafirad P. CBCT-guided adaptive radiotherapy using self-supervised sequential domain adaptation with uncertainty estimation. Med. Image Analysis, 86,102800 (2023). doi: 10.1016/j.media.2023.102800
  42. Bilski M., Konat-Bąska K., Zerella M. A., Corradini S., Hetnał M., Leonardi M. C., Gruba M., Grzywacz A., Hatala P., Jereczek-Fossa B. A., Fijuth J., and Kuncman Ł. Advances in breast cancer treatment: a systematic review of preoperative stereotactic body radiotherapy (SBRT) forbreast cancer. Radiat. Oncol., 19 (1), 103 (2024). doi: 10.1186/s13014-024-02497-4
  43. Ryu S., Deshmukh S., Timmerman R. D., Movsas B., Gerszten P., Yin F. F., Dicker A., Abraham C. D., Zhong J., Shiao S. L., Tuli R., Desai A., Mell L. K., Iyengar P., Hitchcock Y. J., Allen A. M., Burton S., Brown D., Sharp H. J., Dunlap N. E., Siddiqui M. S., Chen T. H., Pugh S. L., and Kachnic L. A. Stereotactic Radiosurgery vs Conventional Radiotherapyfor Localized Vertebral Metastases of the Spine: Phase 3 Results of NRG Oncology/RTOG 0631 Randomized Clinical Trial. JAMA Oncol., 9 (6), 800—807 (2023). doi: 10.1001/jamaoncol.2023.0356
  44. Schiefer H., Heinze S., and Glatzer M. Aprecise and simple isodose-volume-based verification method for HDR and LDR. brachytherapy plans. Brachytherapy, 22 (3), 400—406 (2023). doi: 10.1016/j.brachy.2022.12.007
  45. Sminia P., Guipaud O., Viktorsson K., Ahire V, Baatout S., Boterberg T., Cizkova J., Dostál M., Fernandez-Palomo C., Filipova A., François A., Geiger M., Hunter A., Jassim H., Edin N. F. J., Jordan K., KoniarováI., Selvaraj V. K., Meade A. D., Milliat F., Montoro A., Politis C., Savu D., Sémont A., Tichy A., Válek V., and Vogin G. Clinical Radiobiology for Radiation Oncology. In Radiobiology Textbook, Ed. by S. Baatout (Springer, Cham, 2023), pp. 237—309. doi: 10.1007/978-3-031-18810-7_5
  46. Turco F., Di Prima L., Pisano C., Poletto S., De Filippis M., Crespi V., Farinea G., Cani M., Calabrese M., Saporita I., Di Stefano R. F., Tucci M., and Buttigliero C. How to Improve the Quality of Life of Patients with Prostate Cancer Treated with Hormone Therapy? Res. Rep. Urol., 15 (9), 9—26 (2023). doi: 10.2147/RRU.S350793
  47. Peng W. X., Koirala P., Zhou H., Jiang J., Zhang Z., Yang L., and Mo Y. Y. Lnc-DC promotes estrogen independent growth and tamoxifen resistance in breast cancer. Cell Death Dis., 12 (11), 1000 (2021). doi: 10.1038/s41419-021-04288-1
  48. Kirtishanti A., Siswodihardjo S., Sudiana I. K., Suprabawati D. G. A., and Dinaryanti A. Inhibition of Ras and STAT3 activity of 4-(tert-butyl)-N-carbamoylbenzamide as antiproliferative agent in HER2-expressing breast cancer cells. J. Basic. Clin. Physiol. Pharmacol., 32 (4), 363— 371 (2021). doi: 10.1515/jbcpp-2020-0508
  49. Javaid N. and Choi S. Toll-like receptors from the perspective of cancer treatment. Cancers (Basel), 12 (2), 297 (2020). doi: 10.3390/cancers12020297
  50. Mohamed Y. I., Duda D. G., Awiwi M. O., Lee S. S., Altameemi L., Xiao L., Morris J. S., Wolff R. A., Elsayes K. M., Hatia R. I., Qayyum A., Chamseddine S. M., Rashid A., Yao J. C., Mahvash A., Hassan. M. M., Amin H. M., and Kaseb A. O. Plasma growth hormone is a potential biomarker of response to atezolizumab and bevacizumab in advanced hepatocellular carcinomapatients. Oncotarget, 13, 1314—1321 (2022). doi: 10.18632/oncotarget.28322
  51. Harari A., Graciotti M., Bassani-Sternberg M. and Kandalaft L. E. Antitumour dendritic cell vaccination in a primingandboostingapproach. Nat. Rev. Drug Discov., 19 (9), 635-652 (2020). doi: 10.1038/s41573-020-0074-8
  52. Vedunova M., Turubanova V, Vershinina O., Savyuk M., Efimova I., Mishchenko T., Raedt R., Vral A., Vanhove C., Korsakova D., Bachert C., Coppieters E, Agostinis P., Garg A. D., Ivanchenko M., Krysko O. and Krysko D.V DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis., 13 (12), 1062 (2022). doi: 10.1038/s41419-022-05514-0
  53. Sharma P., Hu-Lieskovan S., Wargo J. A., and Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell, 168 (4), 707-723 (2017). doi: 10.1016/j.cell.2017.01.017
  54. Herrera F .G., Ronet C., Ochoa de Olza M., Barras D., Crespo I., Andreatta M., Corria-Osorio J., Spill A., Benedetti F., Genolet R., Orcurto A., Imbimbo M., Ghisoni E., Navarro Rodrigo B., Berthold D. R., Sarivalasis A., Zaman K., Duran R., Dromain C., Prior J., Schaefer N., Bourhis J., Dimopoulou G., Tsourti Z., Messemaker M., Smith T., Warren S. E., Foukas P., Rusakiewicz S., Pittet M. J., Zimmermann S., Sempoux C., Dafni U., Harari A., Kandalaft L. E., Carmona S. J., Dangaj Laniti D., Irving M., and Coukos G. Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy. CancerDiscov., 12 (1), 108-133 (2022). doi: 10.1158/2159-8290.CD-21-0003
  55. Chen X., Li J., Kang R., Klionsky D. J., and Tang D. Ferroptosis: machinery and regulation. Autophagy, 17(9), 2054-2081 (2021). doi: 10.1080/15548627.2020.1810918
  56. An L., Li M. and Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol. Cancer, 22(1), 140 (2023). doi: 10.1186/s12943-023-01839-2
  57. Lai J. Z., Zhu Y. Y., Liu Y., Zhou L. L., Hu L., Chen L., and Zhang Q. Y. Abscopal effects of local radiotherapy are dependent on tumor immunogenicity. Front. Oncol., 11, 690188 (2021). doi: 10.3389/fonc.2021.690188
  58. Patel R. R., Verma V., Barsoumian H. B., Ning M. S., Chun S. G., Tang C., Chang J. Y., Lee P. P., Gandhi S., Balter P., Dunn J. D., Chen D., Puebla-Osorio N., Cortez M. A. and Welsh J. W. Use of multi-site radiation therapy for systemic disease control. Int. J. Radiat. Oncol. Biol. Phys., 109 (2), 352-364 (2021). doi: 10.1016/j.ijrobp.2020.08.025
  59. Russo M., Moccia S., Luongo D. and Russo G. L. Senolytic flavonoids enhance type-i and type-II cell death in human radioresistant colon cancer cells through AMPK/MAPK pathway. Cancers (Basel), 15 (9), 2660 (2023). doi: 10.3390/cancers15092660
  60. Gil Marques F., Poli E., Malaquias J., Carvalho T., Portê-lo A., Ramires A., Aldeia F., Ribeiro R. M., Vitorino E., Diegues I., Costa L., Coutinho J., Pina F., Mareel M. and Constantino Rosa Santos S. Low doses of ionizing radiation activate endothelial cells and induce angiogenesis in pertumoral tissues. Radiother. Oncol., 151, 322-327 (2020). doi: 10.1016/j.radonc.2020.06.038
  61. Cao X., Yan Z., Chen Z., Ge Y., Hu X., Peng E, Huang W., Zhang P., Sun R., Chen J., Ding M., He X., Zong D. and He X. The emerging role of deubiquitinases in radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys., 118 (5), 1347-1370 (2024). doi: 10.1016/j.ijrobp.2023.12.003
  62. Mehmandar-Oskuie A., Jahankhani K., Rostamlou A., Arabi S., Sadat Razavi Z. and Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed. Pharmacother., 165, 115242 (2023). doi: 10.1016/j.biopha.2023.115242
  63. Cunha A., Silva P. M. A., Sarmento B. and Queirós O. Targeting glucose metabolism in cancer cells as an approach to overcoming drug resistance. Pharmaceutics, 15, 2610 (2023). doi: 10.3390/pharmaceutics15112610
  64. Olivares-Urbano M. A., Griñán-Lisón C., Marchal J. A., and Núñez M. I. CSC radioresistance: Atherapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 9 (7), 1651 (2020). doi: 10.3390/cells9071651
  65. Jansen J., Vieten P., Pagliari F., Hanley R., Marafioti M. G., Tirinato L., and Seco J. A novel analysis method for evaluating the interplay of oxygen and ionizing radiation at the gene level. Front. Genet., 12, 597635 (2021). doi: 10.3389/fgene.2021.597635
  66. Schnöller L. E., Piehlmaier D., Weber P., Brix N., Fleischmann D. E, Nieto A. E., Selmansberger M., Heider T., Hess J., Niyazi M., Belka C., Lauber K., Unger K., and Orth M. Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data. Radiat. Oncol., 18 (1), 51 (2023). doi: 10.1186/s13014-023-02241-4
  67. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Dis., 12 (1), 31-46 (2022). doi: 10.1158/2159-8290.CD-21-1059
  68. Gao F., Yu B., Rao B., Sun Y., Yu J., Wang D., Cui G., and Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol., 13, 1051987 (2022). doi: 10.3389/fimmu.2022.1051987
  69. Forshaw T. E., Holmila R., Nelson K. J., Lewis J. E., Kemp M. L., Tsang A. W., Poole L. B., Lowther W. T., and Furdui C. M. Peroxiredoxins in Cancer and Response to Radiation Therapies. Antioxidants (Base¡), 8 (1), 11 (2019). doi: 10.3390/antiox8010011
  70. Yang Q., Guo N., Zhou Y., Chen J., Wei Q., and Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm. Sin. B, 10 (11), 2156-2170 (2020). doi: 10.1016/j.apsb.2020.04.004
  71. Vasan N., Baselga J. and Hyman D. M. A view on drug resistance in cancer. Nature, 575, 299—309 (2019). doi: 10.1038/s41586-019-1730-1
  72. Robey R. W., Pluchino K. M., Hall M. D., Fojo A. T., Bates S. E., and Gottesman M. M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 18, 452-464 (2018). doi: 10.1038/s41568-018-0005-8
  73. Gillespie M. S., Ward C. M., and Davies C. C. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel), 15 (6), 1897 (2023). doi: 10.3390/cancers15061897
  74. Wang N., Yang Y., Jin D., Zhang Z., Shen K., Yang J., Chen H., Zhao X., Yang L., and Lu H. PARP inhibitor resistance in breast and gynecological cancer: Resistance mechanisms and combination therapy strategies. Front. Pharmacol., 13, 967633 (2022). doi: 10.3389/fphar.2022.967633
  75. Liu R., Chen Y., Liu G., Li C., Song Y., Cao Z., Li W., Hu J., Lu C., and Liu Y. (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis., 11, 797 (2020). doi: 10.1038/s41419-020-02998-6
  76. Averill-Bates D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell. Res., 1871 (2), 119573 (2023). doi: 10.1016/j.bbamcr.2023.119573
  77. Gorecki L., Andrs M. and Korabecny J. Clinical candidates targeting the ATR-CHK1-WEE1 axis in cancer. https://doi.org/Cancers (Basel), 13 (4), 795 (2023). doi: 10.3390/cancers13040795
  78. Xu L., Cao Y., Xu Y., Li R., and Xu X. Redox-responsive polymeric nanoparticle for nucleic acid delivery and cancer therapy: progress, opportunities, and challenges. Macromol. Biosci., 24 (3), e2300238 (2024). doi: 10.1002/mabi.202300238
  79. Nowak P., Bil-Lula I., and Śliwińska-Mossoń M. A Cross-talk about radioresistance in lung cancer—how to improve radiosensitivity according to chinese medicine and medicaments that commonly occur in pharmacies. Int. J. Mol. Sci., 24 (13), 11206 (2023). doi: 10.3390/ijms241311206
  80. Kumagai S., Togashi Y., Sakai C., Kawazoe A., Kawazu M., Ueno T., Sato E., Kuwata T., Kinoshita T., Yamamoto M., Nomura S., Tsukamoto T., Mano H., Shitara K., and Nishikawa H. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells. Immunity, 53 (1), 187-203 (2020). doi: 10.1016/j.immuni.2020.06.016
  81. Ding N., Jiang H., Thapa P., Hao Y., Alshahrani A., Allison D., Izumi T., Rangnekar V. M., Liu X., and Wei Q. Peroxiredoxin IV plays a critical role in cancer cell growth and radioresistance through the activation of the Akt/GSK3 signaling pathways. J. Biol. Chem., 298 (7), 102123 (2022). doi: 10.1016/j.jbc.2022.102123
  82. Suzuki T., Takahashi J., and Yamamoto M. Molecular basis of the KEAP1-NRF2 signaling pathway. Mol. Cells, 46 (3), 133-141 (2023). doi: 10.14348/molcells.2023.0028
  83. Aramouni K., Assaf R., Shaito A., Fardoun M., Al-Asmakh M., Sahebkar A. and Eid A. H. Biochemical and cellular basis of oxidative stress: implications for disease onset. J. Cell. Physiol., 238 (9), 1951-1963 (2023). doi: 10.1002/jcp.31071
  84. Yaromina A., Koi L., Schuitmaker L., Dubois L. J., Krause M., and Lambin P. Overcoming radioresistance with the hypoxia-activated prodrug CP-506: A pre-clinical study of local tumour control probability. Radiother. Oncol., 186, 109738 (2023). doi: 10.1016/j.radonc.2023.109738
  85. Moretton A., Kourtis S., Ganez Zapater A., Calabro C., Espinar Calvo M. L., Fontaine F., Darai E., Abad CortelE., Block S., Pascual-Reguant L., Pardo-Lorente N., Ghose R., Vander Heiden M. G., Janic A., Muller A. C., Loizou J. I., and Sdelci S. A metabolic map of the DNA damage response identifies PRDX1 in the control of nuclear ROS scavenging and aspartate availability. Mol. Syst. Biol., 19 (7), e11267 (2023). doi: 10.15252/msb.202211267
  86. Imamura J., Ganguly S., Muskara A., Liao R. S., Nguyen J. K., Weight C., Wee C. E., Gupta S., and Mian O. Y. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution. Front. Endocrinol. (Lausanne), 14, 1191311 (2023). doi: 10.3389/fendo.2023.1191311
  87. Barciszewska A. M., Giel-Pietraszuk M., Perrigue P. M., and Naskręt-Barciszewska M. Total DNA methylation changes reflect random oxidative dna damage in gliomas. Cells, 8, 1-14 (2019). doi: 10.3390/cells8091065
  88. Gào X., Zhang Y., Burwinkel B., Xuan Y., Holleczek B., Brenner H., and Schöttker B. The associations of DNA methylation alterations in oxidative stress-related genes with cancer incidence and mortality outcomes: a population-based cohort study. Clin. Epigenetics, 11 (1), 14 (2019). doi: 10.1186/s13148-018-0604-y
  89. Wu M., Deng C., Lo T. H., Chan K. Y., Li X., and Wong C. M. Peroxiredoxin, senescence, and cancer. Cells, 11 (11), 1772 (2022). doi: 10.3390/cells11111772
  90. Abad E., Graifer D., and Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett., 474, 106 (2020). doi: 10.1016/j.canlet.2020.01.008
  91. Paul R., Dorsey J. E, and Fan Y. Cell plasticity, senescence, and quiescence in cancer stem cells: Biological and therapeutic implications. Pharmacol. Ther., 231, 107985 (2022). doi: 10.1016/j.pharmthera.2021.107985
  92. Cotino-Nájera S., Herrera L. A., Domínguez-Gómez G., and Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front. Pharmacol., 14, 1287505 (2023). doi: 10.3389/fphar.2023.1287505
  93. Liu J., Erenpreisa J., and Sikora E. Polyploid giant cancer cells: an emerging new field of cancer biology. Seminars Cancer Biol., 81, 1-4 (2022). doi: 10.1016/j.semcancer.2021.10.006
  94. Kang H., Kim B., Park J., Youn H., and Youn B. The Warburg effect on radioresistance: Survival beyond growth. Biochim. Biophys. Acta Rev. Cancer, 1878 (6), 188988 (2023). doi: 10.1016/j.bbcan.2023.188988
  95. Lendeckel U. and Wolke C. Redox-regulation in cancer stem cells. Biomed., 10 (10), 2413 (2022). doi: 10.3390/biomedicines10102413
  96. Wei B., Cao J., Tian J. H., Yu C. Y, Huang Q., Yu J. J., Ma R., Wang J., Xu F., and Wang L. B. Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3ß/ß-catenin signaling pathway. Am. J. Cancer Res., 11 (6), 2696-2716 (2021). DOI:
  97. Son Y. W., Cheon M. G., Kim Y., and Jang H. H. Prx2 links ROS homeostasis to stemness of cancer stem cells. Free Radic. Biol. Med., 134, 260-267 (2019). doi: 10.1016/j.freeradbiomed.2019.01.001
  98. Burkhardt D. B., San Juan B. P., Lock J. G., Krishnaswamy S., and Chaffer C. L. Mapping Phenotypic Plasticity upon the Cancer Cell State Landscape Using Manifold Learning. Cancer Discov., 12 (8), 1847-1859 (2022). doi: 10.1158/2159-8290.CD-21-0282
  99. Qin S., Jiang J., Lu Y., Nice E. C., Huang C., Zhang J., and He W. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct. Target. Ther., 5 (1), 228 (2020). doi: 10.1038/s41392-020-00313-5
  100. Yuan S., Norgard R. J., and Stanger B. Z. Cellular plasticity in cancer. Cancer Discov., 9 (7), 837-851 (2019). doi: 10.1158/2159-8290
  101. Brown M. S., Abdollahi B., Wilkins O. M., Lu H., Chakraborty P., Ognjenovic N. B., Muller K. E., Jolly M. K., Christensen B. C., Hassanpour S., and Pattabiraman D. R. Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer. Sci. Adv., 8 (31), eabj8002 (2022). DOI: https://doi.org/10.1126/sciadv.abj8002
  102. Qiao L., Chen Y., Liang N., Xie J., Deng G., Chen F., Wang X., Liu F., Li Y., and Zhang J. Targeting epithelial-to-mesenchymal transition in radioresistance: crosslinked mechanisms and strategies. Front. Oncol., 12, 775238 (2022). doi: 10.3389/fonc.2022.775238
  103. Marine J. C., Dawson S. J., and Dawson M. A. Non-genetic mechanisms of therapeutic resistance in cancer. Nat. Rev. Cancer., 20 (12), 743-756 (2020). doi: 10.1038/s41568-020-00302-4:
  104. Lai X., Li Q., Wu F., Lin J., Chen J., Zheng H., and Guo L. Epithelial-mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming. Front. Cell Dev. Biol., 8, 760 (2020). doi: 10.3389/fcell.2020.00760
  105. Xue W., Yang L., Chen C., Ashrafizadeh M., Tian Y., and Sun R. Wnt/ß-catenin-driven EMT regulation in human cancers. Cell. Mol. Life Sci., 81 (1), 79 (2024). doi: 10.1007/s00018-023-05099-7
  106. Tahtamouni L., Ahram M., Koblinski J., and Rolfo C. Molecular regulation of cancer cell migration, invasion, and metastasis. Anal. Cell Pathol. (Amst.), 2019, 1356508 (2019). doi: 10.1155/2019/1356508
  107. Lee J. and Roh J. L. Epithelial-mesenchymal plasticity: Implications for ferroptosis vulnerability and cancer therapy. Crit. Rev. Oncol. Hematol., 185, 103964 (2023). doi: 10.1016/j.crtrevonc.2023.103964
  108. Checker R., Bhilwade H. N., Nandha S. R., Patwardhan R. S., Sharma D., and Sandur S. K. Withaferin A, a steroidal lactone, selectively protects normal lymphocytes against ionizing radiation induced apoptosis and genotoxicity via activation of ERK/Nrf-2/HO-1 axis. Toxicol. Appl. Pharmacol., 461, 116389 (2023). doi: 10.1016/j.taap.2023.116389
  109. Sies H. and Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol., 21, 363-383 (2020). doi: 10.1038/s41580-020-0230-3
  110. Sies H., Belousov V. V, Chandel N. S., Davies M. J., Jones D.P., Mann G. E., Murphy M. P., Yamamoto M., and Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell. Biol., 23, 499-515 (2022).
  111. Jomo va K., Rapto va R., Alomar S. Y., Alwasel S. H., Nepovimova E., Kuca K., and Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol., 97 (10), 2499-2574 (2023). doi: 10.1007/s00204-023-03562-9
  112. Zhang H., Mao Z., Kang Y., Zhang W., Mei L., and Ji X. Redox regulation and its emerging roles in cancer treatment. Coordinat Chem. Rev., 475, 214897 (2023). doi: 10.1016/j.ccr.2022.214897
  113. Richardson R. B. and Mailloux. R. J. Mitochondria need their sleep: redox, bioenergetics, and temperature regulation of circadian rhythms and the role of cysteine-mediat-ed redox signaling, uncoupling proteins, and substrate cycles. Antioxidants (Basel), 12 (3), 674 (2023). doi: 10.3390/antiox12030674
  114. Peng L., Xiong Y., Wang R., Xiang L., Zhou H., and Fu Z. The critical role of peroxiredoxin-2 in colon cancer stem cells. Aging (Albany NY), 13 (8), 11170 11187 (2021). doi: 10.18632/aging.202784
  115. Hayes J. D., Dinkova-Kostova A. T. and Tew K. D. Oxidative stress in cancer. Cancer Cell, 38, 167-197 (2020). doi: 10.1016/j.ccell.2020.06.001
  116. Jin P., Li L., Nice E. C., and Huang C. (2023) Nanomedicine-based modulation of redox status for cancer therapy. Australian J. Chem., 76 (6-8), 337-350 (2023). doi: 10.1071/CH22246
  117. Guan X., Ruan Y., Che X., and Feng W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Rad. Biol. Med., 210, 120-129 (2024). doi: 10.1016/j.freeradbiomed.2023.11.009
  118. Jiang J., Peng L., Wang K., and Huang C. Moonlighting metabolic enzymes in cancer: new perspectives on the redox code. Antioxid. Redox Signal., 34, 979-1003 (2021). doi: 10.1089/ars.2020.8123
  119. Balasubramanian P., Vijayarangam V, Deviparasakthi M. K. G., Palaniyandi T., Ravi M., Natarajan S., Viswanathan S., Baskar G., Wahab M. R. A., and Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol. Res. Pract., 254, 155080 (2024). doi: 10.1016/j.prp.2023.155080
  120. Liu W., Su J., Shi Q., Wang J., Chen X., Zhang S., Li M., Cui J., Fan C., Sun B., and Wang G. Peptide-conjugated selenium nanocomposite inhibits human glioma growth by triggering mitochondrial dysfunction and ROS-dependent MAPKs activation. Front. Bioeng. Biotechnol., 9, 781608 (2021). doi: 10.3389/fbioe.2021.781608
  121. Wang L. Y., Liu X. J., Li Q. Q., Zhu Y, Ren H. L., Song J. N., Zeng J., Mei J., Tian H. X., Rong D. C., and Zhang S. H. The romantic history of signaling pathway discovery in cell death: an updated review. Mol. Cell. Biochem., 2023, 1-18 (2023). doi: 10.1007/s11010-023-04873-2
  122. Azmanova M. and Pitto-Barry A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem., 23, e202100641 (2022). doi: 10.1002/cbic.202100641
  123. Mirzaei S., Ranjbar B., Tackallou S. H., and Aref A. R. Hypoxia inducible factor-1a (HIF-1a) in breast cancer: The crosstalk with oncogenic and onco-suppressor factors in regulation of cancer hallmarks. Pathol. Res. Pract., 248, 154676 (2023). doi: 10.1016/j.prp.2023.154676
  124. Ali R., Alhaj Sulaiman A., Memon B., Pradhan S., Algethami M., Aouida M., McKay G., Madhusudan S., Abdelalim E. M., and Ramotar D. Altered Regulation of the glucose transporter GLUT3 in PRDX1 null cells caused hypersensitivity to arsenite. Cells, 12 (23), 2682 (2023). doi: 10.3390/cells12232682
  125. Yang C., Xu W., Gong J., Chai F., Cui D., and Liu Z. Six1 Overexpression promotes glucose metabolism and invasion through regulation of GLUT3, MMP2 and snail in thyroid cancer cells. Onco Targets Ther., 13, 4855-4863 (2020). doi: 10.2147/OTT.S227291
  126. Houshyari M. A critical review on exploring tumor microenvironment's impacts on radioresistance. J. Rad. Res. App. Sci., 17 (2), 100937 (2024). doi: 10.1016/j.jrras.2024.100937
  127. An D., Zhai D., Wan C., and Yang K. The role of lipid metabolism in cancer radioresistance. Clin. Transl. Oncol., 25 (8), 2332-2349 (2023). doi: 10.1007/s12094-023-03134-4
  128. Eltayeb K., La Monica S., Tiseo M., Alfieri R., and Fumarola C. Reprogramming of lipid metabolism in lung cancer: An overview with focus on EGFR-mutated nonsmall cell lung cancer. Cells, 11 (3), 413 (2022). doi: 10.3390/cells11030413
  129. Marino N., German R., Rao X., Simpson E., Liu S., Wan J., Liu Y., Sandusky G., Jacobsen M., Stoval M., Cao S., and Storniolo A. M. V Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. NPJ Breast Cancer, 6 (1), 50 (2020). doi: 10.1038/s41523-020-00191-8
  130. Pham D. V. and Park P. H. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J. Exp. Clin. Cancer Res., 41 (1), 9 (2020). doi: 10.1186/s13046-021-02223-y
  131. Cheng X., Geng F., Pan M., Wu X., Zhong Y., Wang C., Tian Z., Cheng C., Zhang R., Puduvalli V, Horbinski C., Mo X., Han X., Chakravarti A., and Guo D. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell. Metab., 32 (2), 229-242 (2020). doi: 10.1016/j.cmet.2020.06.002
  132. Koundouros N. and Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer, 122 (1), 422 (2020). doi: 10.1038/s41416-019-0650-z
  133. Li Y. J., Fahrmann J. F., Aftabizadeh M., Zhao Q., Tripathi S. C., Zhang C., Yuan Y., Ann D., Hanash S., and Yu H. Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Rep., 39 (13), 111044 (2022). doi: 10.1016/j.celrep.2022.111044
  134. De Martino M., Daviaud C., Minns H. E., Lazarían A., Wacker A., Costa A. P., Attarwala N., Chen Q., Choi S. W., Rabadán R., McIntire L. B. J., Gartrell R. D., Kelly J. M., Laiakis E. C., and Vanpouille-Box C. Radiation therapy promotes unsaturated fatty acids to maintain survival of glioblastoma. Cancer Lett., 570, 216329 (2023). doi: 10.1016/j.canlet.2023.216329
  135. Jin Y., Tan Y., Wu J., and Ren Z. Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discov., 9 (1), 254 (2023). doi: 10.1038/s41420-023-01493-z
  136. Wang D., Ye Q., Gu H., and Chen Z. The role of lipid metabolism in tumor immune microenvironment and potential therapeutic strategies. Front. Oncol., 12, 984560 (2022). doi: 10.3389/fonc.2022.984560
  137. DePeaux K. and Delgoffe G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol., 21 (12), 785-797 (2021). doi: 10.1038/s41577-021-00541-y
  138. Zhao L., Liu Y., Zhang S., Wei L., Cheng H., Wang J., and Wang J. Impacts and mechanisms ofmetabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis., 13 (4), 378 (2022). doi: 10.1038/s41419-022-04821-w
  139. Wang K., Michelakos T., Wang B., Shang Z., DeLeo A. B., Duan Z., Hornicek F. J., Schwab J. H., and Wang X. Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett., 505, 37-48 (2021). doi: 10.1016/j.canlet.2021.02.002
  140. Su X., Xu Y., Fox G. C., Xiang J., Kwakwa K. A., Davis J. L., Belle J. I., Lee W. C., Wong W. H., Fontana F., Hernandez-Aya L. F., Kobayashi T., Tomasson H. M., Su J., Bakewell S. J., Stewart S. A., Egbulefu C., Karmakar P., Meyer M. A., Veis D. J., DeNardo D. G., Lanza G. M., Achilefu S., and Weilbaecher K. N. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J. Clin. Invest., 131 (20), e145296 (2021). doi: 10.1172/JCI145296
  141. Xiang L. and Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit. Rev. Microbiol., 48 (5), 577-610 (2022). doi: 10.1080/1040841X.2021.1992345
  142. Lee Y. H., Tai D., Yip C., Choo S. P. and Chew V. Combinational Immunotherapy for Hepatocellular Carcinoma: Radiotherapy, Immune Checkpoint Blockade and Beyond. Front. Immunol., 11, 568759 (2020). doi: 10.3389/fimmu.2020.568759
  143. He K., Barsoumian H. B., Puebla-Osorio N., Hu Y., Sezen D., Wasley M. D., Bertolet G., Zhang J., Leuschner C., Yang L., Kettlun Leyton C. S., Fowlkes N. W., Green M. M., Hettrick L., Chen D., Masrorpour F., Gu M., Maazi H., Revenko AS., Cortez M. A., and Welsh J. W. Inhibition of STAT6 with Antisense Oligonucleotides Enhances the Systemic Antitumor Effects of Radiotherapy and Anti-PD-1 in Metastatic Non-Small Cell Lung Cancer. Cancer Immunol. Res., 11 (4), 486-500 (2023). doi: 10.1158/2326-6066.CIR-22-0547
  144. Zhang F., Sang Y., Chen D., Wu X., Wang X., Yang W., and Chen Y. M2 macrophage-derived exosomal long non-coding RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by reducing microRNA-296 and elevating NOTCH2. Cell Death Dis., 12 (5), 467 (2021). doi: 10.1038/s41419-021-03700-0
  145. Korbecki J., Bosiacki M., Barczak K., Łagocka R., Brodowska A., Chlubek D., and Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int. J. Mol. Sci., 24 (8), 7262 (2023). doi: 10.3390/ijms24087262
  146. Tsolou A., Lamprou I., Fortosi A. O., Liousia M., Giatromanolaki A., and Koukourakis M. I. 'Stemness' and 'senescence' related escape pathways are dose dependent in lung cancer cells surviving post irradiation. Lfe Sci., 232, 116562 (2019). doi: 10.1016/j.lfs.2019.116562
  147. Nie Y., Yang D., and Oppenheim J. J. Alarmins and antitumor immunity. Clin. Ther., 38 (5), 1042-1053 (2016). doi: 10.1016/j.clinthera.2016.03.021
  148. Land W. G., Agostinis P., Gasser S., Garg A. D., and Linkermann A. DAMP-induced allograft and tumor rejection: The circle is closing. Am. J. Transplant., 16 (12), 3322-3337 (2016). doi: 10.1111/ajt.14012
  149. Hernandez C., Huebener P. and Schwabe R. F. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene, 35 (46), 5931-5941 (2016). doi: 10.1038/onc.2016.104
  150. Pan Y., Yu Y., Wang X., and Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol., 11, 583084 (2020). doi: 10.3389/fimmu.2020.583084
  151. Yunna C., Mengru H., Lei W, and Weidong C. Macrophage M1/M2 polarization. Eur. J. Pharmacol., 877, 173090 (2020). doi: 10.1016/j.ejphar.2020.173090
  152. Timperi E., Gueguen P., Molgora M., Magagna I., Kieffer Y., Lopez-Lastra S., Sirven P., Baudrin L. G., Baulande S., Nicolas A., Champenois G., Meseure D., Vincent-Salomon A., Tardivon A., Laas E., Soumelis V., Colonna M., Mechta-Grigoriou F., Amigorena S., and Romano E. Lipid-associated macrophages are induced by cancer-associated fibroblasts and mediate immune suppression in breast cancer. Cancer Res., 82 (18), 3291-3306 (2022). doi: 10.1158/0008-5472.CAN-22-1427
  153. Sahai E., Astsaturov I., Cukierman E., DeNardo D. G., Egeblad M., Evans R. M., Fearon D., Greten F. R., Hingorani S. R., Hunter T., Hynes R. O., Jain R. K., JanowitzT., Jorgensen C., Kimmelman A. C., KoloninM. G., Maki R. G., Powers R. S., Puré E., Ramirez D. C., Scherz-Shouval R., Sherman M. H., Stewart S., Tlsty T. D., Tuveson D. A., Watt F. M., Weaver V., Weeraratna A. T., and Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 20 (3), 174-186 (2020). doi: 10.1038/s41568-019-0238-1
  154. Bu L., Baba H., Yoshida N., Miyake K., Yasuda T., Uchihara T., Tan P., and Ishimoto T. Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene, 38 (25), 4887-4901 (2019). doi: 10.1038/s41388-019-0765-y
  155. Ermakov M. S., Nushtaeva A. A., Richter V. A., and Koval O. A. Cancer-associated fibroblasts and their role in tumor progression. Vavilovskii Zhurn. Genet. Selektsii, 26 (1), 14-21 (2022). doi: 10.18699/VJGB-22-03
  156. Zhao Q., Huang L., Qin G., Qiao Y., Ren F., Shen C., Wang S., Liu S., Lian J., Wang D., Yu W., and Zhang Y. Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett., 518, 35-48 (2021). doi: 10.1016/j.canlet.2021.06.009
  157. Gong J., Lin Y., Zhang H., Liu C., Cheng Z., Yang X., Zhang J., Xiao Y., Sang N., Qian X., Wang L., Cen X., DuX., and Zhao Y. Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis., 11 (4), 267 (2020). doi: 10.1038/s41419-020-2434-z
  158. Chen B. J., Zhao J. W., Zhang D. H., Zheng A. H., and Wu G. Q. Immunotherapy of Cancer by Targeting Regulatory T cells. Int. Immunopharmacol., 104, 108469 (2021). doi: 10.1016/j.intimp.2021.108469
  159. Galluzzi L., Vitale I., Aaronson S. A., Abrams J. M., Adam D., Agostinis P., Alnemri E. S., Altucci L., Amelio I., Andrews D. W., Annicchiarico-Petruzzelli M., Antonov A. V., Arama E., Baehrecke E. H., Barlev N. A., Bazan N. G., Bernassola F., Bertrand M. J. M., Bianchi K., Blagosklonny M. V, Blomgren K., Borner C., Boya P., Brenner C., Campanella M., Candi E., Carmona-Gutierrez D., Cecconi F., Chan F. K., Chandel N. S., Cheng E. H., Chipuk J. E., Cidlowski J. A., Ciechanover A., Cohen G. M., Conrad M., Cubillos-Ruiz J. R., Czabotar P. E., DAngiolella V, Dawson T. M., Dawson V. L., De Laurenzi V., De Maria R., Debatin K.M., DeBerardinis R. J., Deshmukh M., Di Daniele N., Di Virgilio F., Dixit V. M., Dixon S. J., Duckett C. S., Dynlacht B. D., El-Deiry W. S., Elrod J. W., Fimia G. M., Fulda S., García-Sáez A. J., Garg A. D., Garrido C., Gavathiotis E., Golstein P., Gottlieb E., Green D. R., Greene L. A., Gronemeyer H., Gross A., Hajnoczky G., Hardwick J. M., Harris I. S., Hengartner M. O., Hetz C., Ichijo H., Jäättelä M., Joseph B., Jost P.J., Juin P. P., Kaiser W. J., Karin M., Kaufmann T., Kepp O., Kimchi A., Kitsis R. N., Klionsky D. J., Knight R. A., Kumar S., Lee S. W., Lemasters J. J., Levine B., Linkermann A., Lipton S. A., Lockshin R. A., López-Otín C., Lowe S. W., Luedde T., Lugli E., MacFarlane M., Madeo F., Malewicz M., Malorni W., Manic G., Marine J. C., Martin S. J., Martinou J. C., Medema J. P., Mehlen P., Meier P., Melino S., Miao E. A., Molkentin J. D., Moll U. M., Muñoz-Pinedo C., Nagata S., Nuñez G., Oberst A., Oren M., Overholtzer M., Pagano M., Panaretakis T., Pasparakis M., Penninger J.M., Pereira D. M., Pervaiz S., Peter M. E., Piacentini M., Pinton P., Prehn J. H. M., Puthalakath H., Rabinovich G. A., Rehm M., Rizzuto R., Rodrigues C. M. P., Rubinsztein D. C., Rudel T., Ryan K. M., Sayan E., Scorrano L., Shao F., Shi Y., Silke J., Simon H. U., Sistigu A., Stockwell B. R., Strasser A., Szabadkai G., Tait S. W. G., Tang D., Tavernarakis N., Thorburn A., Tsujimoto Y., Turk B., Vanden Berghe T., Vandenabeele P., Vander Heiden M. G., Villunger A., Virgin H. W., Vousden K. H., Vucic D., Wagner E. F., Walczak H., Wallach D., Wang Y., Wells J. A., Wood W., Yuan J., Zakeri Z., Zhivotovsky B., Zitvogel L., Melino G., and Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Difer., 25 (3), 486-541 (2018). doi: 10.1038/s41418-017-0012-4
  160. Kashyap D., Garg V. K., and Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol., 125 (73), 73-120 (2021). doi: 10.1016/bs.apcsb.2021.01.003
  161. Zhang D., Zhou X., Zhang K., Yu Y., Cui S. W. and Nie S. Glucomannan from Aloe vera gel maintains intestinal barrier integrity via mitigating anoikis mediated by Nrf2-mitochondria axis. Int. J. Biol. Macromol., 235, 123803 (2023). doi: 10.1016/j.ijbiomac.2023
  162. Li D., Park Y., Hemati H., and Liu X. Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. J. Biol. Chem., 299 (12), 105377 (2023). doi: 10.1016/j.jbc.2023.105377
  163. Zhao Z., Li C., Peng Y., Liu R., and Li Q. Construction of an original anoikis-related prognostic model closely related to immune infiltration, in gastric cancer. Front. Genet. , 13, 1087201 (2023). doi: 10.3389/fgene.2022.1087201
  164. Bose M., Sanders A., De C., Zhou R., Lala P., Shwartz S., Mitra B., Brouwer C., and Mukherjee P. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer. Transl. Res., 253, 41-56 (2023). doi: 10.1016/j.trsl.2022.08.010
  165. Cai C., Peng Y., Shen E., Wan R., Gao L., Gao Y., Zhou Y., Huang Q., Chen Y., Liu P., Guo C., Feng Z., Zhang X., Liu Y., Shen H., Zeng S., and Han Y. Identification of tumour immune infiltration-associated snoR-NAs (TIIsno) for predicting prognosis and immune landscape in patients with colon cancer via a TIIsno score model. EBioMedicine, 76, 103866 (2022). doi: 10.1016/j.ebiom.2022.103866
  166. Zaitceva V, Kopeina G. S., and Zhivotovsky B. Anastasis: Return journey from cell death. Cancers (Basel), 13 (15), 3671 (2021). doi: 10.3390/cancers13153671
  167. Diepstraten S. T., Anderson M. A., Czabotar P. E., Lessene G., Strasser A., and Kelly G. L. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer, 22 (1), 45-64 (2022). doi: 10.1038/s41568-021-00407-4
  168. Kehr S. and Vogler M. It's time to die: BH3 mimetics in solid tumors. Biochim. Biophys. Acta Mol. Cell Res., 1868 (5), 118987 (2021). doi: 10.1016/j.bbamcr.2021.118987
  169. Janssens S., Rennen S., and Agostinis P. Decoding immunogenic cell death from a dendritic cell perspective. Immunol. Rev., 321 (1), 350 370 (2024). doi: 10.1111/imr.13301
  170. Ahmed A. and Tait S. W. G. Targeting immunogenic cell death in cancer. Mol. Oncol., 14(12), 2994-3006 (2020). doi: 10.1002/1878-0261.12851
  171. Fucikova J., Kepp O., Kasikova L., Petroni G., Yamazaki T.., Liu P, Zhao L., Spisek R., Kroemer G., and Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis., 11 (11), 1013 (2020). doi: 10.1038/s41419-020-03221-2
  172. Park H. H., Kim H. R., Park S. Y., Hwang S. M., HongS.M., Park S., Kang H. C., Morgan M. J., Cha J. H., Lee D., Roe J. S., and Kim Y. S. RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol. Cancer, 20 (1), 107 (2021). doi: 10.1186/s12943-021-01399-3
  173. Zhang T., Yin C., Fedorov A., Qiao L., Bao H., Beknazarov N., Wang S., Gautam A., Williams R. M., Crawford J. C., Peri S., Studitsky V., Beg A. A., Thomas P. G., Walkley C., Xu Y., Poptsova M., Herbert A., and Balachandran S. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature, 606 (7914), 594-602 (2022). doi: 10.1038/s41586-022-04753-7
  174. Yan J., Wan P., Choksi S., and Liu Z. G. Necroptosis and tumor progression. Trends Cancer, 8 (1), 21-27 (2022). doi: 10.1016/j.trecan.2021.09.003
  175. Du T., Gao J., Li P., Wang Y., Qi Q., Liu X., Li J., Wang C., and Du L. Pyroptosis, metabolism, and tumor immune microenvironment. Clin. Transl. Med., 11 (8), e492 (2021). doi: 10.1002/ctm2.492
  176. Wang Q., Wang Y., Ding J., Wang C., Zhou X., Gao W., Huang H., Shao F., and Liu Z. A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature, 579 (7799), 421-426 (2020). doi: 10.1038/s41586-020-2079-1
  177. Wei X., Xie F., Zhou X., Wu Y., Yan H., Liu T., Huang J., Wang F., Zhou F., and Zhang L. Role of pyroptosis in inflammation and cancer. Cell. Mol. Immunol., 19 (9), 971 992 (2022). doi: 10.1038/s41423-022-00905-x
  178. Torres-Velarde J. M., Allen K. N., Salvador-Pascual A., Leija R. G., Luong D., Moreno-Santillán D. D., Ensminger D. C., and Vázquez-Medina J. P. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Radic. Biol. Med., 218, 82-93 (2024). doi: 10.1016/j.freeradbiomed.2024.04.208
  179. Chen X., Zhang L., He Y., Huang S., Chen S., Zhao W., and Yu D. Regulation of m6A modification on ferroptosis and its potential significance in radiosensitization. Cell Death Dis., 9 (1), 343 (2023). doi: 10.1038/s41420-023-01645-1
  180. Lei G., Zhuang L., and Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer cell, 42 (4), 513-534 (2024). doi: 10.1016/j.ccell.2024.03.011
  181. Shen D., Luo J., Chen L., Ma W., Mao X., Zhang Y., Zheng J., Wang Y., Wan J., Wang S., Ouyang J., Yi H., Liu D., Huang W., Zhang W., Liu Z., McLeod H. L., and He Y. PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer. Cancer Lett., 550, 215919 (2022). doi: 10.1016/j.canlet.2022.215919
  182. Zhao L., Zhou X., Xie F., Zhang L., Yan H., Huang J., Zhang C., Zhou F., Chen J., and Zhang L. Ferroptosis in cancer and cancer immunotherapy. Cancer Commun. (Lond.), 42 (2), 88-116 (2022). doi: 10.1002/cac2.12250
  183. Yan Y. and Gan B. Hyperoxidized PRDX3 as a specific ferroptosis marker. Life Metab., 2 (6), load042 (2023). doi: 10.1093/lifemeta/load042
  184. Yao L. C., Aryee K. E., Cheng M., Kaur P., Keck J. G., and Brehm M. A. Creation of PDX-bearing humanized mice to study immuno-oncology. Methods Mol. Biol., 1953, 241-252 (2019). doi: 10.1007/978-1-4939-9145-7_15
  185. Tian H., Lyu Y., Yang Y. G., and Hu Z. Humanized rodent models for cancer research. Front. Oncol., 10, 1696 (2020). doi: 10.3389/fonc.2020.01696
  186. Fiorini E., Veghini L., and Corbo V. Modeling cell communication in cancer with organoids: Making the complex simple. Front. Cell Dev. Biol., 8, 166 (2020). doi: 10.3389/fcell.2020.00166
  187. Zheng D., Li J., Yan H., Zhang G., Li W., Chu E., and Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm. Sin. B, 13 (7), 2826-2843 (2023). doi: 10.1016/j.apsb.2023.03.013
  188. Hill R. M., Fok M., Grundy G., Parsons J. L., and Rocha S. The role of autophagy in hypoxia-induced radioresistance. Radiother. Oncol., 189, 109951 (2023). doi: 10.1016/j.radonc.2023.109951
  189. He L., Yu X., and Li W. Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses. ACS Nano, 16 (12), 19691-19721 (2022). doi: 10.1021/acsnano.2c07286
  190. Pan Y, Zhu Y, Xu C, Pan C, Shi Y, Zou J, Li Y, Hu X, Zhou B, Zhao C, Gao Q, Zhang J, Wu A, Chen X, and LiJ. Biomimetic Yolk-Shell nanocatalysts for activatable dual-modal-image-guided triple-augmented chemodynamic therapy of cancer. ACS Nano, 16 (11), 1903819052 (2022). doi: 10.1021/acsnano.2c08077
  191. Caverzán M. D., Beaugé L., Chesta C. A., Palacios R. E., and Ibarra L. E. Photodynamic therapy of Glioblastoma cells using doped conjugated polymer nanoparticles: An in vitro comparative study based on redox status. J. Photochem. Photobiol. B, 212, 112045 (2020). doi: 10.1016/j.jphotobiol.2020.112045
  192. Gudkov S. V., Shilyagina N. Y., Vodeneev V. A. and Zvyagin A. V. Targeted radionuclide therapy of human tumors. Int. J. Mol. Sci., 17 (1), 33 (2015). doi: 10.3390/ijms17010033
  193. Su S. and Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 12, 837 (2020). doi: 10.3390/pharmaceutics12090837
  194. Fujita H., Ohta S., Nakamura N., Somiya M. and Horie M. Progress of endogenous and exogenous nanoparticles for cancer therapy and diagnostics. Genes (Basel), 14 (2), 259 (2023). doi: 10.3390/genes14020259
  195. Li J., Wu T., Li S., Chen X., Deng Z., and Huang Y. Nanoparticles for cancer therapy: a review of influencing factors and evaluation methods for biosafety. Clin. Translat. Oncol., 25 (7), 2043-2055 (2023). doi: 10.1007/s12094-023-03117-5
  196. Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y. B., and Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther., 8 (1), 418 (2023). doi: 10.1038/s41392-023-01642-x
  197. Tan G. R., Hsu C. S., and Zhang Y. pH-Responsive hybrid nanoparticles for imaging spatiotemporal ph changes in biofilm-dentin microenvironments. ACS Appl. Mater. Interfaces, 13, 46247-46259 (2021). doi: 10.1021/acsami.1c11162
  198. Xie N., Shen G., Gao W., Huang Z., Huang C., and Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct. Target. Ther., 8, 9 (2023). doi: 10.1038/s41392-022-01270-x
  199. Gisbert-Garzarán M., Berkmann J. C., Giasafaki D., Lozano D., Spyrou K., Manzano M., Steriotis T., Duda G. N.., Schmidt-Bleek K., Charalambopoulou G., and Vallet-Regí M. Engineered pH-responsive mesoporous carbon nanoparticles for drug delivery. ACS Appl. Mater. Interfaces, 12, 14946-14957 (2020). doi: 10.1021/acsami.0c01786
  200. Ge L., Qiao C., Tang Y., Zhang X., and Jiang X. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery. Nano Lett., 21, 3218-3224 (2021). doi: 10.1021/acs.nanolett.1c00488
  201. Jin J. and Zhao Q. Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. J. Nanobiotechnol., 18, 75 (2020). doi: 10.1186/s12951-020-00629-y
  202. Roy I., Krishnan S., Kabashin A. V., Zavestovskaya I. N., and Prasad P. N. Transforming nuclear medicine with nanoradiopharmaceuticals. ACS Nano, 16, 5036-5061 (2022). doi: 10.1021/acsnano.1c10550
  203. Domańska I. M., Figat R., Zalewska A., Cieśla K., Kowalczyk S., Kędra K., and Sobczak M. The influence of ionizing radiation on paclitaxel-loaded nanoparticles based on PLGA. Appl. Sci., 13 (19), 11052 (2023). doi: 10.3390/app131911052

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences