Models of Flowering Gene Networks and Their Adaptation for the Analysis of Vernalization Mechanisms in Legumes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Flowering time is the most important agronomic trait which is used in breeding and determines the crop performance. Vernalization, or prolonged exposure to cold, accelerates flowering and increases yields in many crops. The molecular mechanisms of vernalization-induced flowering are well studied in Arabidopsis thaliana, but remain largely unknown for legumes. Mathematical modeling is a powerful tool to predict regulatory interactions in gene networks on the basis of gene expression patterns. This review concerns previously developed approaches to modeling gene regulatory networks of the flowering transition process and the prospects for their adaptation with the aim of conducting the analysis of the mechanisms of vernalization requirement in legumes.

About the authors

V. V Gursky

Ioffe Institute

St. Petersburg, 194021 Russia

M. A Duk

Ioffe Institute; Peter the Great St. Petersburg Polytechnic University

St. Petersburg, 194021 Russia; St. Petersburg, 195251 Russia

M. P Bankin

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, 195251 Russia

M. G Samsonova

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, 195251 Russia

S. Yu Surkova

Peter the Great St. Petersburg Polytechnic University

Email: surkova_syu@spbstu.ru
St. Petersburg, 195251 Russia

References

  1. Jung C. and Müller A. E. Flowering time control and applications in plant breeding. Trends Plant Sci., 14 (10), 563–573 (2009). doi: 10.1016/j.tplants.2009.07.005
  2. Taylor C. M., Kamphuis L. G., Zhang W., Garg G., Berger J. D., Mousavi-Derazmahalleh M., Bayer P. E., Edwards D., Singh K. B., Cowling W. A., and Nelson M. N. INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ., 42 (1), 174–187 (2019). doi: 10.1111/pce.13320
  3. Fudge J. B., Lee R. H., Laurie R. E., Mysore K. S., Wen J., Weller J. L., and Macknight R. C. Medicago truncatula SOC1 genes are up-regulated by environmental cues that promote flowering. Frontiers in plant science, 9, 496 (2018). doi: 10.3389/fpls.2018.00496
  4. Gao B., Bian X. C., Yang F., Chen M. X., Das D., Zhu X. R., Jiang Y., Zhang J., Cao Y. Y., and Wu C. F. Comprehensive transcriptome analysis of faba bean in response to vernalization. Planta, 251 (1), 22 (2019). doi: 10.1007/s00425-019-03308-x
  5. Yuan X., Wang Q., Yan B., Zhang J., Xue C., Chen J., Lin Y., Zhang X., Shen W., and Chen X. Single-molecule real-time and Illumina-based RNA sequencing data identified vernalization-responsive candidate genes in faba bean (Vicia faba L.). Frontiers in genetics, 12, 656137 (2021). doi: 10.3389/fgene.2021.656137
  6. Rychel-Bielska S., Plewiński P., Kozak B., Galek R., and Ksiażkiewicz M. Photoperiod and vernalization control of flowering-related genes: A case study of the narrow-leafed lupin (Lupinus angustifolius L.). Front. Plant Sci., 11, 572135 (2020). doi: 10.3389/fpls.2020.572135
  7. Sung S. and Amasino R. M. Vernalization and epigenetics: how plants remember winter. Curr. Opin. Plant Biol., 7 (1), 4–10 (2004). doi: 10.1016/j.pbi.2003.11.010
  8. Kim D. H., Doyle M. R., Sung S., and Amasino R. M. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Develop. Biol., 25, 277–299 (2009). doi: 10.1146/annurev.cellbio.042308.113411
  9. Sharma N., Geuten, K., Giri B. S., and Varma A. The molecular mechanism of vernalization in Arabidopsis and cereals: role of flowering locus C and its homologs. Physiol. plantarum, 170 (3), 373–383 (2020). doi: 10.1111/ppl.13163
  10. Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M., Sanchez A., Valarik M., Yasuda S., and Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA, 103 (51), 19581–19586 (2006). doi: 10.1073/pnas.0607142103
  11. Surkova S. Y. and Samsonova M. G. Mechanisms of vernalization-induced flowering in legumes. Int. J. Mol. Sci., 23 (17), 9889 (2022). doi: 10.3390/ijms23179889
  12. Sharma S. and Upadhyaya H. D. Vernalization and photoperiod response in annual wild Cicer species and cultivated chickpea. Crop Sci., 55 (5), 2393–2400 (2015). doi: 10.2135/cropsci2014.09.0598
  13. Pinhasi van-Oss R., Sherman A., Zhang H. B., Vandemark G., Coyne C., and Abbo S. Plant Breeding, 135 (1), 102–110 (2016). doi: 10.1111/pbr.12325
  14. Berger J. D., Buck R., Henzell J. M., and Turner N. C. Evolution in the genus Cicer – vernalisation response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Austr. J. Agricult. Res., 56, 1191–1200 (2005). doi: 10.1071/ar05089
  15. Gaur P. M., Jukanti A. K., and Varshney R.K. Impact of genomic technologies on chickpea breeding strategies. Agronomy, 2 (3), 199–221 (2012). doi: 10.3390/agronomy2030199
  16. Samineni S., Kamatam S., Thudi M., Varshney R. K., and Gaur P. M. Vernalization response in chickpea is controlled by a major QTL. Euphytica, 207, 453–461 (2016). doi: 10.1007/s10681-015-1571-4
  17. Wigge P. A., Kim M. C., Jaeger K. E., Busch, W., Schmid M., Lohmann J. U., and Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 309 (5737), 1056– 1059 (2005). doi: 10.1126/science.1114358
  18. Weller J. L. and Ortega R. Genetic control of flowering time in legumes. Frontiers in plant science, 6, 207 (2015). doi: 10.3389/fpls.2015.00207
  19. Benlloch R., Berbel A., Ali L., Gohari G., Millán T., and Madueño F. Genetic control of inflorescence architecture in legumes. Frontiers in plant science, 6, 543 (2015). doi: 10.3389/fpls.2015.00543
  20. Lee J. H., Hong S. M., Yoo S. J., Park O. K., Lee J. S., and Ahn J. H. Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiol. Plantarum, 126 (4), 475–483 (2006). doi: 10.1111/j.1399-3054.2006.00619.x
  21. Hecht V., Foucher F., Ferrándiz C., Macknight R., Navarro C., Morin J., Vardy M. E., Ellis N., Beltrán J. P., Rameau C., and Weller J. L. Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol., 137 (4), 1420–1434 (2005). doi: 10.1104/pp.104.057018
  22. Hecht V., Laurie R. E., Vander Schoor J. K., Ridge S., Knowles C. L., Liew L. C., Sussmilch F. C., Murfet I. C., Macknight R. C., and Weller J. L. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell, 23 (1), 147–161 (2011). doi: 10.1105/tpc.110.081042
  23. Laurie R. E., Diwadkar P., Jaudal M., Zhang L., Hecht V., Wen J., Tadege M., Mysore K. S., Putterill J., Weller J. L., and Macknight R. C. The Medicago FLOWERING LOCUS T homolog, MtFTa1, is a key regulator of flowering time. Plant Physiol., 156 (4), 2207–2224 (2011). doi: 10.1104/pp.111.180182
  24. N elson M. N., Książkiewicz M., Rychel S., Besharat N., Taylor C. M., Wyrwa K., Jost R., Erskine W., Cowling W. A., Berger J. D., Batley J., Weller J. L., Naganowska B., and Wolko B. The loss of vernalization requirement in narrow-leafed lupin is associated with a deletion in the promoter and de-repressed expression of a Flowering Locus T (FT) homologue. New Phytologist, 213 (1), 220–232 (2017). doi: 10.1111/nph.14094
  25. Weller J. L. and Macknight R. C. Functional genomics and flowering time in Medicago truncatula: An overview. Methods Mol. Biol., 1822, 261–271 (2018). doi: 10.1007/978-1-4939-8633-0_17
  26. Searle I., He Y., Turck F., Vincent C., Fornara F., Kröber S., Amasino R. A., and Coupland G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Develop., 20 (7), 898–912 (2006). doi: 10.1101/gad.373506
  27. Mateos J. L., Madrigal P., Tsuda K., Rawat V., Richter R., Romera-Branchat M., Fornara F., Schneeberger K., Krajewski P., and Coupland G. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol., 16 (1), 31 (2015). doi: 10.1186/s13059-015-0597-1
  28. Welch S. M., Roe J. L., and Dong Z. A genetic neural network model of flowering time control in Arabidopsis thaliana. Agron. J., 95 (1), 71–81 (2003). doi: 10.2134/agronj2003.0071
  29. Salazar J. D., Saithong T., Brown P. E., Foreman J., Locke J. C., Halliday K. J., Carré I. A., Rand D. A., and Millar A. J. Prediction of photoperiodic regulators from quantitative gene circuit models. Cell, 139 (6), 1170–1179 (2009). doi: 10.1016/j.cell.2009.11.029
  30. Jaeger K. E., Pullen N., Lamzin S., Morris R. J., and Wigge P. A. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell, 25 (3), 820–833 (2013). doi: 10.1105/tpc. 113.109355
  31. Pullen N., Jaeger K. E., Wigge P. A., and Morris R. J. Simple network motifs can capture key characteristics of the floral transition in Arabidopsis. Plant Signal. Behav., 8 (11), e26149 (2013). doi: 10.4161/psb.26149
  32. van Dijk A. D. J. and Molenaar J. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time. Peer J., 5, e3197 (2017). doi: 10.7717/peerj.3197
  33. Valentim F. L., van Mourik S., Posé D., Kim M. C., Schmid M., van Ham R. C., Busscher M., SanchezPerez G. F., Molenaar J., Angenent G. C., Immink R. G., and van Dijk A. D. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLoS One, 10 (2), e0116973 (2015). doi: 10.1371/journal.pone.0116973
  34. Wang C. C., Chang P. C., Ng K. L., Chang C. M., Sheu P. C., and Tsai J. J. A model comparison study of the flowering time regulatory network in Arabidopsis. BMC Systems Biol., 8, 15 (2014). doi: 10.1186/1752-0509-8-15
  35. Wenden B., Dun E. A., Hanan J., Andrieu B., Weller J. L., Beveridge C. A., and Rameau C. Computational analysis of flowering in pea (Pisum sativum). New Phytologist, 184 (1), 153–167 (2009). doi: 10.1111/j.1469-8137.2009.02952.x
  36. Sussmilch F. C., Berbel A., Hecht V., Vander Schoor J. K., Ferrándiz C., Madueño F., and Weller J. L. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development. Plant Cell, 27 (4), 1046–1060 (2015). doi: 10.1105/tpc. 115.136150
  37. Pavlinova P., Samsonova M. G., and Gursky V. V. Dynamical modeling of the core gene network controlling transition to flowering in Pisum sativum. Front. Genetics, 12, 614711 (2021). doi: 10.3389/fgene.2021.614711
  38. Gursky V. V., Kozlov K. N., Nuzhdin S. V., and Samsonova M. G. Dynamical modeling of the core gene network controlling flowering suggests cumulative activation from the FLOWERING LOCUS T gene homologs in chickpea. Front. Genetics, 9, 547 (2018). doi: 10.3389/fgene.2018.00547
  39. Ridge S., Deokar A., Lee R., Daba K., Macknight R. C., Weller J. L., and Tar'an B. The chickpea early flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3. Plant Physiol., 175 (2), 802–815 (2017). doi: 10.1104/pp.17.00082
  40. Подольный Б. С., Гурский В. В. и Самсонова М. Г. Анализ экспрессии генов цветения в сорте нута CDC Frontier методами машинного обучения. Биофизика, 65 (2), 263–276 (2020). doi: 10.1134/S0006350920020189
  41. Helliwell C. A., Wood C. C., Robertson M., Peacock J. W., and Dennis E. S. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J., 46 (2), 183–192 (2006). doi: 10.1111/j.1365-313X.2006.02686.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences