Properties of Resorbable Conduits Based on Poly(L-lactide) Nanofibers and Chitosan Fibers for Peripheral Nerve Regeneration
- Authors: Tagandurdyyeva N.A1, Trube M.A2, Shemyakin I.O3, Solomitskiy D.N3, Medvedev G.V3, Ivan’kova E.M1, Dobrovolskaya I.P1,4, Yudin V.Y.1,4
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Peoples' Friendship University of Russia
- Pavlov First State Medical University of St. Petersburg
- Institute of Macromolecular Compounds, Russian Academy of Sciences
- Issue: Vol 69, No 5 (2024)
- Pages: 1118-1129
- Section: Medical biophysics
- URL: https://kld-journal.fedlab.ru/0006-3029/article/view/676161
- DOI: https://doi.org/10.31857/S0006302924050173
- EDN: https://elibrary.ru/MIWKZC
- ID: 676161
Cite item
Abstract
About the authors
N. A Tagandurdyyeva
Peter the Great St. Petersburg Polytechnic University
Email: jemala1996@gmail.com
Saint Petersburg, 195251 Russia
M. A Trube
Peoples' Friendship University of RussiaMoscow, 117198 Russia
I. O Shemyakin
Pavlov First State Medical University of St. PetersburgSaint Petersburg, 197022 Russia
D. N Solomitskiy
Pavlov First State Medical University of St. PetersburgSaint Petersburg, 197022 Russia
G. V Medvedev
Pavlov First State Medical University of St. PetersburgSaint Petersburg, 197022 Russia
E. M Ivan’kova
Peter the Great St. Petersburg Polytechnic UniversitySaint Petersburg, 195251 Russia
I. P Dobrovolskaya
Peter the Great St. Petersburg Polytechnic University; Institute of Macromolecular Compounds, Russian Academy of SciencesSaint Petersburg, 195251 Russia; Saint Petersburg, 199004 Russia
V. Ye Yudin
Peter the Great St. Petersburg Polytechnic University; Institute of Macromolecular Compounds, Russian Academy of SciencesSaint Petersburg, 195251 Russia; Saint Petersburg, 199004 Russia
References
- Houshyar Sh., Bhattacharyya A., and Shanks R. Peripheral nerve conduit: materials and structures. ACS Chem. Neurosci., 10 (8), 3349–3365 (2019). doi: 10.1021/acschemneuro.9b00203
- Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J. Hand Surg., 25A, 391–414 (2000). doi: 10.1053/jhsu.2000.4165
- Meek M. F. and Coert J. H. US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann. Plast. Surg., 60 (1), 110–116 (2008). doi: 10.1097/SAP.0b013e31804d441c
- Babu P., Behl A., Chakravarty B., Bhandari P., Bhatti T., and Maurya S. Entubulation techniques in peripheral nerve repair. Ind. J. Neurotrauma, 5, 15–20 (2008). doi: 10.1016/S0973-0508(08)80023-8
- de Ruiter G. C. W., Malessy M. J. A., Yaszemski M. J., Windebank A. J., and Spinner R. J. Designing ideal conduits for peripheral nerve repair. Neurosurg. Focus., 26, E5 (2009). doi: 10.3171/FOC.2009.26.2.E5
- Millesi H. Bridging defects: autologous nerve grafts. Acta Neurochir. Suppl., 100, 37–38 (2007). doi: 10.1007/978-3-211-72958-8_8
- Hodgkin A. L. and Huxley A. F. Action potentials recorded from inside a nerve fibre. Nature, 144, 710–711 (1939). doi: 10.1038/144710a0
- Dahlin L. B. and Lundborg G. Use of tubes in peripheral nerve repair. Neurosurg. Clin. N. Am., 12, 341–352 (2001). doi: 10.1016/S1042-3680(18)30059-7
- Hudson A. R., Morris J., Weddell G., and Drury A. Peripheral nerve autografts. J. Surg. Res., 12, 267–274 (1972). doi: 10.1016/0022-4804(72)90021-2
- Martini R. Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. J. Neurocytol., 23, 1–28 (1994). doi: 10.1007/BF01189813
- Huang W., Begum R., Barber T., Ibba V., Tee N. C. H., Hussain M., Arastoo M., Yang Q., Robson L. G., Lesage S., Gheysens T., Skaer N. J. V., Knight D. P., and Priestley J. V. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials, 33, 59–71 (2012). doi: 10.1016/j.biomaterials.2011.09.030
- Seddon H. J. Three types of nerve injury. Brain, 66, 237– 288 (1943). doi: 10.1093/brain/66.4.237
- Kehoe S., Zhang X. F., and Boyd D. FDA Approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury, 43, 553–572 (2012). doi: 10.1016/j.injury.2010.12.030
- Wang X., Hu W., Cao Y., Yao J., Wu J., and Gu X. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/pga artificial nerve graft. Brain, 128, 1897– 1910 (2005). doi: 10.1093/brain/awh517
- Quigley A. F., Razal J. M., Thompson B. C., Moulton S. E., Kita M., Kennedy E. L., Clark G. M., Wallace G. G., and Kapsa R. M. I. A conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth. Adv. Mater., 21, 4393–4397 (2009). doi: 10.1002/adma.200901165
- Jing W., Ao Q., Wang L., Huang Z., Cai Q., Chen G., Yang X., and Zhong W. Constructing conductive conduit with conductive fibrous infilling for peripheral nerve regeneration. Chem. Eng. J., 345, 566–577 (2018). doi: 10.1016/j.cej.2018.04.044
- Yoo J., Park J. H., Kwon Y. W., Chung J. J., Choi I. C., Nam J. J., Lee H. S., Jeon E. Y., Lee K., Kim S. H., JungY., and Park J. W. Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel. BioMater. Sci., 8, 6261–6271 (2020). doi: 10.1039/D0BM00847H
- Quigley A. F., Razal J. M., Thompson B. C., Moulton S. E., Kita M., Kennedy E. L., Clark G. M., Wallace G. G., and Kapsa R. M. I. A Conducting-polymer platform with biodegradable fibers for stimulation and guidance of axonal growth. Adv. Mater., 21, 4393– 4397 (2009). doi: 10.1002/adma.200901165
- Chew S. Y., Mi R., Hoke A., and Leong K. W. Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv. Funct. Mater., 17, 1288–1296 (2007). doi: 10.1002/adfm.200600441
- Newman K. D., McLaughlin C. R., Carlsson D., Li F., Liu Y., and Griffith M. Bioactive hydrogel-filament scaffolds for nerve repair and regeneration. Int. J. Artif. Organs, 29, 1082–1091 (2006). doi: 10.1177/039139880602901109
- Cai J., Peng X., Nelson K. D., Eberhart R., and Smith G. M. Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation. J. Biomed. Mater. Res. A, 75, 374–386 (2005). doi: 10.1002/jbm.a.30432
- Erturk A., Hellal F., Enes J., and Bradke F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci., 27, 9169–9180 (2007). doi: 10.1523/JNEUROSCI.0612-07.2007
- Menorca R. M. G., Fussell T. S., and Elfar J. C. Nerve physiology: mechanisms of injury and recovery. Hand Clin., 29, 317–330 (2013). doi: 10.1016/j.hcl.2013.04.002
- Evans G. R. Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat. Rec., 263, 396–404 (2001). doi: 10.1002/ar.1120
- Johnson E. O., Zoubos A. B., and Soucacos P. N. Regeneration and repair of peripheral nerves. Injury, 36 (Suppl. S4), S24–S29 (2005). doi: 10.1016/j.injury.2005.10.012
- Siemionow M. and Brzezicki G. Chapter 8: Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol., 87, 141–172 (2009). doi: 10.1016/S0074-7742(09)87008-6
- Jiang X., Lim S. H., Mao H.-Q., and Chew S. Y. Current applications and future perspectives of artificial nerve conduits. Exp. Neurol., 223, 86–101 (2010). doi: 10.1016/j.expneurol.2009.09.009
- Ngo T.-T. B., Waggoner P. J., Romero A. A., Nelson K. D., Eberhart R. C., and Smith G. M. Poly(Llactide) microfilaments enhance peripheral nerve regeneration across extended nerve lesions. J. Neurosci. Res., 72, 227–238 (2003). doi: 10.1002/jnr.10570
- Saeki M., Tanaka K., Imatani J., Okamoto H., Watanabe K., Nakamura T., Gotani H., Ohi H., Nakamura R., and Hirata H. Efficacy and safety of novel collagen conduits filled with collagen filaments to treat patients with peripheral nerve injury: a multicenter, controlled, open-label clinical trial. Injury, 49, 766–774 (2018). doi: 10.1016/j.injury.2018.03.011
- Ceballos D., Navarro X., Dubey N., WendelschaferCrabb G., Kennedy W. R., and Tranquillo R. T. Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp. Neurol., 158, 290–300 (1999). doi: 10.1006/exnr.1999.7111
- Navissano M., Malan F., Carnino R., and Battiston B. Neurotube for facial nerve repair. Microsurgery, 25, 268– 271 (2005). doi: 10.1002/micr.20128
- Sundback C., Hadlock T., Cheney M., and Vacanti J. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process. Biomaterials, 24, 819–830 (2003). doi: 10.1016/S0142-9612(02)00409-X
- Stang F., Fansa H., Wolf G., Reppin M., and Keilhoff G. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration. Biomaterials, 26, 3083– 3091 (2005). doi: 10.1016/j.biomaterials.2004.07.060
- Allodi I., Udina E., and Navarro X. Specificity of peripheral nerve regeneration: interactions at the axon level. Prog. Neurobiol., 98, 16–37 (2012). doi: 10.1016/j.pneurobio.2012.05.005
- Gámez E., Goto Y., Nagata K., Iwaki T., Sasaki T., and Matsuda T. Photofabricated gelatin-based nerve conduits: nerve tissue regeneration potentials. Cell Transpl., 13, 549–564 (2004). doi: 10.3727/000000004783983639
- Xie F., Li Q. F., Gu B., Liu K., and Shen G. X. In vitro and in vivo evaluation of a biodegradable chitosan–PLA composite peripheral nerve guide conduit material. Microsurgery, 28, 471–479 (2008). doi: 10.1002/micr.20514
- Radtke C., Allmeling C., Waldmann K.-H., Reimers K., Thies K., Schenk H. C., Hillmer A., Guggenheim M., Brandes G., and Vogt P. M. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One, 6 (2), e16990 (2011). doi: 10.1371/journal.pone.0016990
- Yang Y., Ding F., Wu J., Hu W., Liu W., Liu J., and Gu X. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 28 (36), 5526–5535 (2007). doi: 10.1016/j.biomaterials.2007.09.001
- Wang C., Jia Y., Yang W., Zhang C., Zhang K., and Chai Y. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J. Biomed. Mater. Res. A, 106, 2070–2077 (2018). doi: 10.1002/jbm.a.36390
- Ito T., Nakamura T., Suzuki K., Takagi T., Toba T., Hagiwara A., Kihara K., Miki T., Yamagishi H., and ShimizuY. Regeneration of hypogastric nerve using a polyglycolic acid (PGA)-collagen nerve conduit filled with collagen sponge proved electrophysiologically in a canine model. Int. J. Artif. Organs, 26 (3), 245–251 (2003). doi: 10.1177/039139880302600311
- Matsumoto K., Ohnishi K., Kiyotani T., Sekine T., Ueda H., Nakamura T., Endo K., and Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res., 868 (2), 315–328 (2000). doi: 10.1016/s0006-8993(00)02207-1
- Kiyotani T., Teramachi M., Takimoto Y., Nakamura T., Shimizu Y., and Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res., 740 (1–2), 66–74 (1996). doi: 10.1016/s0006-8993(96)00848-7
- Yuan Y., Zhang P., Yang Y., Wang X., and Gu X. The interaction of schwann. cells with chitosan membranes and fibers in vitro. Biomaterials, 25, 4273–4278 (2004). doi: 10.1016/j.biomaterials.2003.11.029
- Simões M. J., Gärtner A., Shirosaki Y., Gil da Costa R. M., Cortez P. P., Gartnër F., Santos J. D., Lopes M. A., Geuna S., Varejão A. S. P., and Maurício A. C. In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Acta Med. Port., 24 (1), 43–52 (2011). doi: 10.20344/amp.344
- Meyer C., Stenberg L., Gonzalez-Perez F., Wrobel S., Ronchi G., Udina E., Suganuma S., Geuna S., Navarro X., Dahlin L. B., Grothe C., and HaastertTalini K. Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 76, 33–51 (2016). doi: 10.1016/j.biomaterials.2015.10.040
- Stenberg L., Kodama A., Lindwall-Blom C., and Dahlin L. B. Nerve regeneration in chitosan conduits and in autologous nerve grafts in healthy and in type 2 diabetic Goto-Kakizaki rats. Eur. J. Neurosci., 43, 463–473 (2016). doi: 10.1111/ejn.13068
- Neubrech F., Sauerbier M., Moll W., Seegmüller J., Heider S., Harhaus L., Bickert B., Kneser U., and KremerT. Enhancing the outcome of traumatic sensory nerve lesions of the hand by additional use of a chitosan nerve tube in primary nerve repair. Plast. Reconstr. Surg., 142, 415–424 (2018). doi: 10.1097/PRS.0000000000004574
- Boecker A., Daeschler S. C., Kneser U., and Harhaus L. Relevance and recent developments of chitosan in peripheral nerve surgery. Front. Cell Neurosci., 13, 104 (2019). doi: 10.3389/fncel.2019.00104
- Huang H.-C., Hong L., Chang P., Zhang J., Lu S.-Y., Zheng B.-W., and Jiang Z.-F. Chitooligosaccharides attenuate Cu2+-induced cellular oxidative damage and cell apoptosis involving Nrf2 activation. Neurotox. Res., 27, 411–420 (2015). doi: 10.1007/s12640-014-9512-x
- Wang Y., Zhao Y., Sun C., Hu W., Zhao J., Li G., Zhang L., Liu M., Liu Y., Ding F., Yang Y., and Gu X. Chitosan degradation products promote nerve regeneration by stimulating schwann. cell proliferation via MiR27a/FOXO1 Axis. Mol. Neurobiol., 53, 28–39 (2016). doi: 10.1007/s12035-014-8968-2
- Duffy P., McMahon S., Wang X., Keaveney S., O’Cearbhaill E. D., Quintana I., Rodríguez F. J., and Wang W. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater. Sci., 7, 4912–4943 (2019). doi: 10.1039/C9BM00246D
- Chrząszcz P., Derbisz K., Suszyński K., Miodoński J., Trybulski R., Lewin-Kowalik J., and Marcol W. Application of peripheral nerve conduits in clinical practice: A literature review. Neurol. Neurochir. Pol., 52, 427–435 (2018). doi: 10.1016/j.pjnns.2018.06.003
- Lu M. C., Huang Y. T., Lin J. H., Yao C. H., Lou C. W., Tsai C. C., and Chen Y. S. Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J. Mater. Sci. Mater. Med., 20 (5), 1175–1180 (2009). doi: 10.1007/s10856-008-3646-4
- Goulart C. O., Lopes F. R. P., Monte Z. O., Dantas S. V., Souto A., Oliveira J. T., Almeida F. M., Tonda-Turo C., Pereira C. C., and Borges C. P. Evaluation of biodegradable polymer conduits–poly (l-lactic acid)–for guiding sciatic nerve regeneration in mice. Methods, 99, 28–36 (2016). doi: 10.1016/j.ymeth.2015.09.008
- Matsumine H., Sasaki R., Yamato M., Okano T., and Sakurai H. A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats. J. Tissue Eng. Regen. Med., 8 (6), 454–462 (2014). doi: 10.1002/term.1540
- Binan L., Tendey C., De Crescenzo G., El Ayoubi R., Ajji A., and Jolicoeur M. Differentiation of neuronal stem cells into motor neurons using electrospun poly-L-lactic acid/gelatin scaffold. Biomaterials, 35 (2), 664–674 (2014). doi: 10.1016/j.biomaterials.2013.09.097
- Dobrovol’skaya I. P., Kasatkin I. A., Yudin V. E., Ivan’kova E. M., and Elokhovskii V. Y. Supramolecular structure of chitin nanofibrils. Polym. Sci. Ser. A, 57, 52–57 (2015). doi: 10.1134/S0965545X15010022
- Yudin V. E., Dobrovolskaya I. P., Neelov I. M., Dresvyanina E. N., Popryadukhin P. V., Ivan’kova E. M., Elokhovskii V. Y., Kasatkin I. A., Okrugin B. M., and Morganti P. Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydr. Polym., 108, 176–182 (2014). doi: 10.1016/j.carbpol.2014.02.090
- D resvyanina E., Yudenko A., Yevlampieva N., Maevskaya E., Yudin V., Gubarev A., Slyusarenko M., and Heppe K. The molecular mass effect on mechanical properties of chitosan fibers. FibRes. Text., 25, 27–31 (2018).
- Pavot A., Ignacio D., and Tchou S. Thermography in peripheral nerve injury and its relationship to electroneuromyography. Adv. Tech. Clin. Appl. Biomed. Thermol., 255, 255–280 (1994).
- Zhang M., Zhang F., Li C., An H., Wan T., and Zhang P. Application of chitosan and its derivative polymers in clinical medicine and agriculture. Polymers, 14, 958 (2022). doi: 10.3390/polym14050958
Supplementary files
