The Use of Cholesterol/Randomly Methylated β-Cyclodextrin (RAMEB) Inclusion Complexes to Improve Human Spermatozoa Cryosurvival

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Сryoprotective properties of cholesterol/randomly methylated beta-cyclodextrin (RAMEB) inclusion complexes with respect to human spermatozoa have been investigated. The influence of different concentrations of RAMEB and cholesterol/RAMEB inclusion complexes on sperm membranes has been explored. It was shown that obvious cytotoxicity of RAMEB against spermatozoa is due to the interaction between cyclodextrins and lipid components of the membrane, in particular cholesterol extraction. Cholesterol/RAMEB inclusion complexes are significantly less cytotoxic. The dependence of cholesterol concentration in sperm membranes on the concentration of cholesterol/RAMEB inclusion complexes in the sample was established. It was demonstrated that incubation of spermatozoa with 2 mg/ml of cholesterol inclusion complexes before cryopreservation caused a statistically significant increase in survival rate (by 13.8%) and in the proportion of progressively motile spermatozoa (by 14.8%) post-thaw. X-ray diffraction revealed that the concentrations of RAMEB or cholesterol/RAMEB inclusion complexes (2, 4 and 8 mg/mL) do not affect the average size of ice crystals formed in the sample during cryopreservation in the samples. The mechanism of the cryoprotective effect of cholesterol/RAMEB inclusion complexes is proposed.

About the authors

A. G Mironova

Human Reproduction Clinic “Altravita”; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: agm90@mail.ru
Moscow, Russia

S. I Afanasyeva

M.V. Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

S. A Yakovenko

M.V. Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

A. N Tikhonov

N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; M.V. Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

E. Yu Simonenko

M.V. Lomonosov Moscow State University

Faculty of Physics Moscow, Russia

References

  1. Royere D., Barthelemy C., Hamamah S., and Lansac J. Cryopreservation of spermatozoa: a 1996 review. Hum. Reprod. Update, 2, 553-559 (1996). doi: 10.1093/HUMUPD/2.6.553
  2. Polge C., Smith A. U., and Parkes A. S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 164, 666-666 (1949). doi: 10.1038/164666a0
  3. Bunge R. G. and Sherman J. K. Fertilizing capacity of frozen human spermatozoa. Nature, 172, 767-768 (1953). doi: 10.1038/172767b0
  4. Rodriguez-Wallberg K. A., Waterstone M., and Anastácio A. Ice age: Cryopreservation in assisted reproduction - An update. Reprod. Biol., 19, 119-126 (2019). doi: 10.1016/J.REPBIO.2019.04.002
  5. McBride A. J. and Lipshultz L. I. Male fertility preservation. Curr. Urology Rep., 19 (7), 49 (2018). doi: 10.1007/s11934-018-0803-2
  6. Moore K. J., Delgado C., and Ory J. Fiertility preservation in uro-oncology. Curr. Opin. Support Palliat. Care, 16, 230-233 (2022). doi: 10.1097/SPC.0000000000000621
  7. Hughes G. and da Silva M. S. Sperm cryopreservation for impaired spermatogenesis. Reproduction & fertility, 4 (1), e220106 (2022). Advance online publication. doi: 10.1530/RAF-22-0106
  8. Liu S. and Li F. Cryopreservation of single-sperm: where are we today? Reprod. Biol. Endocrinol., 18 (1), 41 (2020). doi: 10.1186/S12958-020-00607-X
  9. Guidance regarding gamete and embryo donation (American Society for Reproductive Medicine, 2021).
  10. Ozimic S., Ban-Frangez H., and Stimpfel M. Sperm cryopreservation today: approaches, efficiency, and pitfalls. Curr. Issues Mol. Biol., 45, 4716-4734 (2023). doi: 10.3390/CIMB45060300
  11. Kunkitti P., Chatdarong K., Suwimonteerabutr J., Nedumpun T., Johannisson A., Bergqvist A. S., Sjunnesson Y., and Axnér E. Osmotic tolerance of feline epididymal spermatozoa. Anim. Reprod. Sci., 185, 148-153 (2017). doi: 10.1016/J.ANIREPROSCI.2017.08.014
  12. Yashaswi S. and Mona S. Biophysics of cryopreservation. Int. J. Thermodynamics, 25, 17-27 (2022). doi: 10.5541/IJOT.925283
  13. Morris J. G., Acton E., Murray B. J., and Fonseca F. Freezing injury: the special case of the sperm cell. Cryobiology, 64, 71-80 (2012). doi: 10.1016/J.CRYOBIOL.2011.12.002
  14. Белоус А. М. и Грищенко В. И. Криобиология (Наукова думка, 1994).
  15. Quinn P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology, 22, 128-146 (1985). doi: 10.1016/0011-2240(85)90167-1
  16. Ilieva A., Ivanov A. G., Kovachev K., Richter H. P. Cryodamage in ram sperm plasma membranes. Energy transfer and freeze-fracture studies. J. Electroanalyt. Chem., 342, 41-44 (1992). doi: 10.1016/0022-0728(92)85033-Y
  17. Mazur P. Freezing of living cells: mechanisms and implications. Am. J. Physiol., 247 (3), 125-142 (1984). doi: 10.1152/AJPCELL.1984.247.3.C125
  18. van Blitterswijk W. J., Hilkmann H., and van der Meer B. W. Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization. Biochemistry, 26, 1746-1756 (1987). doi: 10.1021/BI00380A038
  19. Yeagle P. L. Cholesterol and the cell membrane. Biochim. Biophys. Acta, 822, 267-287 (1985). doi: 10.1016/0304-4157(85)90011-5
  20. Tilcock C. P. S., Bally M. B., Farren S. B., Cullis P. R., and Gruner S. M. Cation-dependent segregation phenomena and phase behavior in model membrane systems containing phosphatidylserine: influence of cholesterol and acyl chain composition. Biochemistry, 23, 2696-2703 (1984). doi: 10.1021/BI00307A025
  21. Cohen R., Mukai C., and Travis A. J. Lipid regulation of acrosome exocytosis. Adv. Anat. Embryol. Cell Biol., 220, 107-127 (2016). doi: 10.1007/978-3-319-30567-7_6
  22. Abouhaila A. and Tulsiani D. R. P. Signal transduction pathways that regulate sperm capacitation and the acrosome reaction. Arch. Biochem. Biophys., 485, 72-81 (2009). doi: 10.1016/J.ABB.2009.02.003
  23. Darin-Bennett A. and White I. G. Influence of the cholesterol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology, 14, 466-470 (1977). doi: 10.1016/0011-2240(77)90008-6
  24. Purdy P. H. and Graham J. K. Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm. Cryobiology, 48, 36-45 (2004). doi: 10.1016/j.cryobiol.2003.12.001
  25. Mocé E. and Graham J. K. Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival. J. Anim. Sci., 84, 826-833 (2006). doi: 10.2527/2006.844826X
  26. Combes G. B., Varner D. D., Schroeder F., Burghardt R. C., and Blanchard T. L. Effect of cholesterol on the motility and plasma membrane integrity of frozen equine spermatozoaafterthawing. J. Reprod. Fertil. Suppl., 56, 127-132 (2000). PMID: 20681124
  27. Moore A. I., Squires E. L., and Graham J. K. Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival. Cryobiology, 51, 241-249 (2005). doi: 10.1016/J.CRYOBIOL.2005.07.004
  28. Uekama K., Hirayama F., and Irie T. Cyclodextrin drug carrier systems. Chem. Rev., 98, 2045-2076 (1998). doi: 10.1021/CR970025P
  29. Huang Z. and London E. Effect of cyclodextrin and membrane lipid structure upon cyclodextrin-lipid interaction. Langmuir, 29, 14631-14638 (2013). doi: 10.1021/LA4031427
  30. Lipkowitz K. B. Applications of computational chemistry to the study of cyclodextrins. Chem. Rev., 98, 1829-1873 (1998). doi: 10.1021/CR9700179
  31. Davis M. E. and Brewster M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov., 3, 1023-1035 (2004). doi: 10.1038/NRD1576
  32. Szente L. and Fenyvesi É. Cyclodextrin-lipid complexes: cavity size matters. Struct. Chem., 28, 479-492 (2017). doi: 10.1007/S11224-016-0884-9/METRICS
  33. Ohtani Y., Irie T., Uekama K., Fukunaga K., and Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem., 186,17-22 (1989). doi: 10.1111/J.1432-1033.1989.TB15171.X
  34. Tsamaloukas A., Szadkowska H., Slotte P. J., and Heerklotz H. Interactions of cholesterol with lipid membranes and cyclodextrin characterized by calorimetry. Biophys. J., 89,1109-1119 (2005). doi: 10.1529/BIOPHYSJ.105.061846
  35. Christoforides E., Papaioannou A., and Bethanis K. Crystal structure ofthe inclusion complex of cholesterol in ß-cyclodextrin and molecular dynamics studies. Beilstein J. Org. Chem., 14, 838-848 (2018). doi: 10.3762/BJOC.14.69
  36. Jozwiakowski M. J. and Connors K. A. Aqueous solubility behavior of three cyclodextrins. Carbohydr. Res., 143, 5159 (1985). doi: 10.1016/S0008-6215(00)90694-3
  37. Szente L. and Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. DrugDeliv. Rev., 36,17-28 (1999). doi: 10.1016/S0169-409X(98)00092-1
  38. Szejtli J. Dimethyl-ß-cyclodextrin as parenteral drug carrier. J. Inclusion Phenomena, 1, 135-150 (1983). doi: 10.1007/BF00656816
  39. Spencer C. M., Stoddart J. F., and Zarzycki R. Structural mapping of an unsymmetrical chemically modified cyclodextrin by high-field nuclear magnetic resonance spectroscopy. J. Chem. Soc., Perkin Trans. 2, No 9, 1323-1336 (1987). doi: 10.1039/P29870001323
  40. Process for the preparation of alkylated cyclodextrin derivatives, methylated cyclodextrin derivatives which can be prepared by the process and the use ofthe products. Patent № DE4333598A1
  41. WHO laboratory manual for the examination and processing ofhumansemen. World Health Organization, 6,1276 (2021)
  42. Christian A. E., Haynes M. P., Phillips M. C., and Rothblat G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res., 38, 2264-2272 (1997). doi: 10.1016/S0022-2275(20)34940-3
  43. Kilsdonk E. P. C., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., and Roth-blat G. H. Cellular cholesterol efflux, mediated by cyclodextrins. J. Biol. Chem., 270, 17250-17256 (1995). doi: 10.1074/JBC.270.29.17250
  44. Castagne D., Fillet M., Delattre L., Evrard B., Nusgens B., and Piel G. Study of the cholesterol extraction capacity of ß-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models. J. Incl. Phenom. Macrocycl. Chem., 63, 225-231 (2009). doi: 10.1007/S10847-008-9510-9/METRICS
  45. Kiss T., Fenyvesi F., Bácskay I., Váradi J., Fenyvesi É., Iványi R., Szente L., TósakiÁ., andVecsernyés M. Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. Eur. J. Pharm. Sci., 40, 376-380 (2010). doi: 10.1016/J.EJPS.2010.04.014
  46. Piel G., Piette M., Barillaro V., Castagne D., Evrard B., and Delattre L. Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity ofliposomes. Int. J. Pharm, 338, 35-42 (2007). doi: 10.1016/J.IJPHARM.2007.01.015
  47. Wenz G. Influence of intramolecular hydrogen bonds on the binding potential of methylated ß-cyclodextrin derivatives. Beilstein J. Org. Chem.,8, 1890-1895 (2012). doi: 10.3762/BJOC.8.218
  48. Fenyvesi É., Szemán J., Csabai K., Malanga M., and Szente L. Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J. Pharm. Sci., 103,1443-1452 (2014). doi: 10.1002/JPS.23917
  49. Sheetz M. P. and Singer S. J. Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J. Cell Biol., 70, 247-251 (1976). doi: 10.1083/JCB.70.1.247
  50. Cassera M. B., Silber A. M., and Gennaro A. M. Differential effects of cholesterol on acyl chain order in erythrocyte membranes as a function of depth from the surface. An electron paramagnetic resonance (EPR) spin label study. Biophys. Chem., 99, 117-127 (2002). https://doi.org/10.1016/S0301-4622(02)00139-4
  51. Moore A. I., Squires E. L., and Graham J. K. Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival. Cryobiology, 51, 241-249 (2005). https://doi.org/10.1016/J.CRYOBIOL.2005.07.004
  52. Mocé E. and Graham J. K. Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival. J. Anim. Sci., 84, 826-833 (2006). doi: 10.2527/2006.844826X
  53. Subczynski W. K., Pasenkiewicz-Gierula M., Widomska J., Mainali L., and Raguz M. High cholesterol/low cholesterol: Effects in biological membranes: a review. Cell Biochem. Biophys., 75, 369-385 (2017). doi: 10.1007/S12013-017-0792-7
  54. Joset A., Grammenos A., Hoebeke M., and Leyh B. Investigation of the interaction between a ß-cyclodextrin and DMPC liposomes: A small angle neutron scattering study. J. Incl. Phenom. Macrocycl. Chem., 83, 227-238 (2015). doi: 10.1007/S10847-015-0558-Z/METRICS
  55. Mocé E., Purdy P. H., and Graham J. K. Treating ram sperm with cholesterol-loaded cyclodextrins improves cryosurvival. Anim. Reprod. Sci., 118, 236-247 (2010). doi: 10.1016/J.ANIREPROSCI.2009.06.013
  56. Murphy C., English A. M., Holden S. A., and Fair S. Cholesterol-loaded-cyclodextrins improve the post-thaw quality of stallion sperm. Anim. Reprod. Sci., 145, 123-129 (2014). doi: 10.1016/J.ANIREPROSCI.2014.01.013
  57. Spizziri B. E., Fox M. H., Bruemmer J. E., Squires E. L., and Graham J. K. Cholesterol-loaded-cyclodextrins and fertility potential of stallions spermatozoa. Anim. Reprod. Sci., 118, 255-264 (2010). doi: 10.1016/J.ANIREPROSCI.2009.08.001
  58. da Cardoso L. M. F., Pinto M. A., Pons H. A., and Alves L. A. Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology, 78, 15-21 (2017). doi: 10.1016/J.CRYOBIOL.2017.07.010
  59. Uchida T., Nagayama M., Shibayama T., and Gohara K. Morphological investigations of disaccharide molecules for growth inhibition of ice crystals. J. Crystal Growth, 299(1), 125-135 (2007). doi: 10.1016/j.jcrysgro.2006.10.261
  60. Solocinski J., Osgood Q., Wang M., Connolly A., Menze M. A., and Chakraborty N. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism. Cryobiology, 75, 134-143 (2017). doi: 10.1016/J.CRYOBIOL.2017.01.001
  61. Wang G. M. and Haymet A. D. J. Trehalose and other sugar solutions at low temperature: modulated differential scanning calorimetry (MDSC). J. Phys. Chemistry B, 102, 5341-5347 (1998). doi: 10.1021/JP980942E

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences