Simulation modeling of glutamate cysteine ligase activity

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

L-Y-glutamyl-L-cysteinyl glycine, or glutathione, as one of the basic intracellular antioxidants, plays a vital role in cellular metabolism. In mammalian cells, glutathione is synthesized via two steps. The first step that is considered rate limiting is catalyzed by glutamate cysteine ligase. In this work, a stochastic algorithm based on continuous-time Markov chains was used to simulate the activity of glutamate-cysteine ligase. Several different mechanisms of enzymatic activity including reversible inhibition of glutathione, and an ATP binding motif have been considered. Based on physiological metabolite measurements made for human erythrocytes, the activity of glutamate cysteine ligase was determined. There are many possible ways for substrates to bind to an active site of the studied enzyme, but, only the mechanism by which primary binding to ATP can occur makes it possible to obtain the catalytic rate value similar to that of the experimentally measured glutamatecysteine ligase activity relative to physiological concentrations of substrates. In other cases, the values differ by more than one order of magnitude. The performed analysis allows the conclusion that when models for glutathione biosynthesis are constructed in vivo conditions, the ATP concentration and reversible inhibition of glutathione should be taken into account.

作者简介

V. Kopylova

Institute of Cytochemistry and Molecular Pharmacology

Email: kopilova.veronika@yandex.ru
Moscow, Russia

S. Boronovskiy

Institute of Cytochemistry and Molecular Pharmacology

Moscow, Russia

Ya. Nartsissov

Institute of Cytochemistry and Molecular Pharmacology;BiDiPharma GmbH

Moscow, Russia;Siek, Germany

参考

  1. A. A. Korneev, I. A. Komissarova, and Y. R. Nartsissov, Bull. Exp. Biol. Med., 116, 1089 (1993).
  2. В. И. Скворцова, Я. Р. Нарциссов, М. К. Бодыхов и др., Журн. неврологии и психиатрии им. С.С. Корсакова, 107, 30 (2007).
  3. Y. R. Nartsissov, Biochem. Soc. Trans., 45 (5), 1097 (2017).
  4. R. Dringen, Progr. Neurobiol. 62 (6), 649 (2000).
  5. Л. П. Смирнов и И. В. Суховская, Учен. зап. Петрозавод. гос. ун-та, 6 (143), 34 (2014).
  6. M. Deponte, Antioxid. Redox Signal., 27 (15), 1130 (2017).
  7. V. I. Kulinskii and L. S. Kolesnichenko, Biomed. Khim., 55 (3), 255 (2009).
  8. K. Chik, F. Flourie, K. Arab, et al., J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 827 (1), 32 (2005).
  9. Y. Yang, E. D. Lenherr, R. Gromes, et al., Biochem. J., 476 (7), 1191 (2019).
  10. R. Njalsson, Cell Mol. Life Sci., 62 (17), 1938 (2005).
  11. H. Zhang and H. J. Forman, Semin. Cell Dev. Biol., 23 (7), 722 (2012).
  12. A. Dinescu, M. E. Anderson, and T. R. Cundari, Biochem. Biophys. Res.Commun., 353 (2), 450 (2007).
  13. M. Grant, F. H. MacIver, and I. W. Dawes, Mol. Biol. Cell., 8 (9), 1699 (1997).
  14. K. Bachhawat and S. Yadav, IUBMB Life, 70 (7), 585 (2018).
  15. V. I. Kulinskii and L. S. Kolesnichenko, Biomed. Khim., 55 (4), 365 (2009).
  16. A. Meister and M. E. Anderson, Annu. Rev. Biochem., 52, 711 (1983).
  17. T. W. Sedlak, B. D. Paul, G. M. Parker, et al., Proc. Natl. Acad. Sci. USA, 116 (7), 2701 (2019).
  18. О. А. Борисенок, М. И. Бушма, О. Н. Басалай и др., Мед. новости, 7 (298), 3 (2019).
  19. G. E. van Buskirk, J. E. Gander, and W. B. Rathbun, Eur. J. Biochem., 85 (2), 589 (1978).
  20. B. Yip and F. B.Rudolph, J. Biol. Chem., 251 (12), 3563 (1976).
  21. D. L. Brekken and M. A. Phillips, J. Biol. Chem., 273 (41), 26317 (1998).
  22. G. Mendoza-Cozatl and R. Moreno-Sanchez, J. Theor. Biol., 238 (4), 919 (2006).
  23. M. C. Reed, R. L. Thomas, J. Pavisic, et al., Theor. Biol. Med. Model., 5, 8 (2008).
  24. J. E. Raftos, S. Whillier, and P. W. Kuchel, J. Biol. Chem., 285 (31), 23557 (2010).
  25. J. M. Jez, R. E. Cahoon, and S. Chen, J. Biol. Chem., 279 (32), 33463 (2004).
  26. M. Orlowski and A. Meister, Biochemistry, 10 (3), 372 (1971).
  27. V. Y. Titova, S. E. Boronovskiy, J. P. Mazat, et al., J. Physics: Conf. Series, 1141, 012029 (2018).
  28. E. Mashkovtseva, S. Boronovsky, and Y. Nartsissov, Math. Biosci., 243 (1), 117 (2013).
  29. N. V. Kazmiruk, S. E. Boronovskiy, and Y. R. Nartsissov, Biophysics, 63 (3), 318 (2018).
  30. O. A. Zagubnaya, S. Boronovskiy, and Y. R. Nartsissov, J. Physics: Conf. Series, 1141, (2018).
  31. O. W. Griffith and R. T. Mulcahy, Adv. Enzymol. Relat. Areas Mol. Biol., 73, 209 (1999).
  32. R. Quintana-Cabrera, S. Fernandez-Fernandez, V. Bobo-Jimenez, et al., Nat.Commun., 3, 718 (2012).
  33. Z. Tu and M. W. Anders, Arch. Biochem. Biophys., 354 (2), 247 (1998).
  34. M. N. Willis, Y. Liu, E. I. Biterova, et al., Biochemistry, 50 (29), 6508 (2011).
  35. Y. Chen, H. G. Shertzer, S. N. Schneider, et al., J. Biol. Chem., 280 (40), 33766 (2005).
  36. O. W. Griffith, Free Radic. Biol. Med., 27 (9-10), 922 (1999).
  37. K. Kiessling, N. Roberts, J. S. Gibson, et al., Hematol. J., 1 (4), 243 (2000).
  38. D. Darmaun, S. D. Smith, S. Sweeten, et al., Diabetes, 54 (1), 190 (2005).
  39. E. Skotnicka, I. Baranowska-Bosiacka, W. Dudzinska, et al., Biology of Sport, 25 (1), 35 (2008).
  40. J. C. Divino Filho, S. J. Hazel, P. Furst, et al., J. Endocrinol., 156 (3), 519 (1998).
  41. Y. Xiong, Y. Xiong, Y. Wang, et al., Cell Physiol. Biochem., 51 (5), 2172 (2018).
  42. G. Noctor, A.-C. M. Arisi, L. Jouanin, et al., Physiol. Plantarum, 100 (2), 255 (1997).
  43. A. Kuster, I. Tea, S. Sweeten, et al., Anal. Bioanal. Chem., 390 (5), 1403 (2008).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023