Study of mechanical properties and corrosion resistance of ultrafine-grained austenitic chromium-nickel steel produced by rotary swaging
- Authors: Zotov D.A.1, Kopylov V.I.1, Chegurov M.K.1, Nokhrin A.V.1, Sysoev A.N.1, Chuvil’deev V.N.1, Kotkov D.N.1
-
Affiliations:
- Lobachevsky State National Researcher University of Nizhny Novgorod
- Issue: Vol 126, No 4 (2025)
- Pages: 482-495
- Section: ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ
- URL: https://kld-journal.fedlab.ru/0015-3230/article/view/688460
- DOI: https://doi.org/10.31857/S0015323025040091
- EDN: https://elibrary.ru/JNPUJF
- ID: 688460
Cite item
Abstract
The microstructure, phase composition, and mechanical properties of austenitic stainless heat-resistant chromium-nickel steel grade 08Cr18Ni10Ti (Fe–0.08%C–18%Cr–10%Ni–0.6%Ti) have been studied. The ultrafine-grained (UFG) structure in steel is formed by the Rotary Swaging (RS) method. UFG steel 08Cr18Ni10Ti has a high strength (ultimate tensile strength σB = 1580 MPa) and low ductility (elongation to failure δ ∼ 4%). Electrochemical tests of UFG steel for intergranular corrosion (IGC) resistance according to GOST 9.914–91 were carried out. The formation of a UFG structure in austenitic steel 08Cr18Ni10Ti by the RS method leads to a decrease in its IGC resistance. Annealing leads to a non-monotonic change in the mechanical properties and corrosion resistance of UFG steel. After annealing at 450–500°C, an increase in microhardness and tensile strength is observed, as well as a decrease in the ductility and IGC resistance of UFG steel. An increase in the annealing temperature to 800oC leads to a decrease in strength and an increase in the IGC resistance of UFG steel.
Full Text

About the authors
D. A. Zotov
Lobachevsky State National Researcher University of Nizhny Novgorod
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
V. I. Kopylov
Lobachevsky State National Researcher University of Nizhny Novgorod
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
M. K. Chegurov
Lobachevsky State National Researcher University of Nizhny Novgorod
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
A. V. Nokhrin
Lobachevsky State National Researcher University of Nizhny Novgorod
Author for correspondence.
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
A. N. Sysoev
Lobachevsky State National Researcher University of Nizhny Novgorod
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
V. N. Chuvil’deev
Lobachevsky State National Researcher University of Nizhny Novgorod
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
D. N. Kotkov
Lobachevsky State National Researcher University of Nizhny Novgorod
Email: nokhrin@nifti.unn.ru
Russian Federation, Nizhny Novgorod, 603022
References
- Сагарадзе В.В., Уваров А.И. Упрочнение и свойства аустенитных сталей. Екатеринбург: ИФМ им. М.Н. Михеева РАН, 2013. 720 с.
- Сагарадзе В.В., Филиппов Ю.И., Матвиенко М.Ф., Мирощниченко Б.И., Лоскутов В.Е., Канайкин В.А. Коррозионное растрескивание аустенитных и ферритоперлитных сталей. Екатеринбург: УрО РАН, 2004. 228 с.
- Lo K.H., Shek C.H., Lai J.K.L. Recent developments in stainless steels // Mater. Sci. Eng. R. 2009. V. 65. P. 39–104.
- Tikhonova M., Kaibyshev R., Belyakov A. Microstructure and mechanical properties of austenitic stainless steels after dynamic and post-dynamic recrystallization treatment // Adv. Eng. Mater. 2018. V. 20. P. 1700960.
- Bai G., Lu S., Li Y. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel // Corrosion Sci. 2015. V. 90. P. 347–358.
- Dobatkin S.V., Rybalchenko O.V., Enikeev N.A., Tokar A.A., Abramova M.M. Formation of fully austenitic ultrafine-grained high strength state in metastable Cr-Ni-Ti stainless steel by severe plastic deformation // Mater. Lett. 2016. V. 166. P. 276–279.
- Huang C.X., Yang G., Wang C., Zhang Z.F., Wu S.D. Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by Equal-Channel Angular Pressing // Metall. Mater. Trans. A. 2011. V. 42. P. 2061–2071.
- Panov D.O., Kudryavtsev E.A., Chernichenko R.S., Naumov S.V., Chandra Sekhar K., Stepanov N.D., Zherebtsov S.V., Salishchev G.A., Pertsev A.S. Significantly enhanced mechanical properties of metastable austenitic stainless steel with large-scale gradient structure // Mater. Sci. Eng. A. 2025. V. 927. P. 147975.
- Копылов В.И., Чувильдеев В.Н., Нохрин А.В., Козлова Н.А., Чегуров М.К., Мелехин Н.В. Исследование прочности, релаксационной и коррозионной стойкости ультрамелкозернистой аустенитной стали 08Х18Н10Т, полученной методом РКУ-прессования. II. Исследование релаксационных свойств и стойкости против межкристаллитной коррозии // Металлы. 2023. № 5. С. 44–59.
- Mirzadeh H. Superplasticity of fine-grained austenitic stainless steels: A review // Journal of Ultrafine Grained and Nanostructured Mater. 2023. V. 56. No. 1. P. 27–41.
- Копылов В.И., Чувильдеев В.Н., Грязнов М.Ю., Шотин С.В., Нохрин А.В., Лихницкий К.В., Чегуров М.К., Пирожникова О.Э. Исследование прочности, релаксационной и коррозионной стойкости ультрамелкозернистой аустенитной стали 08Х18Н10Т, полученной методом РКУ-прессования. III. Деформационное поведение при повышенных температурах // Металлы. 2023. № 6. С. 35–52.
- Du C., Liu G., Sun B., Xin S., Shen T. A 2.9 GPa strength nano-gradient and nano-precipitated 304L-type austenitic stainless steel // Materials. 2020. V. 13. P. 5382.
- Sohrabi M.J., Naghizadeh M., Mirzadeh H. Deformation-induced martensite in austenitic stainless steels: A review // Archives of Civil and Mechanical Eng. 2020. V. 20. P. 124.
- Косицына И.И., Сагарадзе В.В., Копылов В.И. Формирование высокопрочного и высокопластичного состояния в метастабильных аустенитных сталях методом равноканально-углового прессования // ФММ. 1999. Т. 88. С. 84–89.
- Добаткин С.В., Рыбальченко О.В., Рааб Г.И. Формирование субмикрокристаллической структуры в аустенитной стали 08Х18Н10Т при РКУ прессовании и нагреве // Металлы. 2006. № 1. С. 48–54.
- Копылов В.И., Чувильдеев В.Н., Нохрин А.В., Грязнов М.Ю., Шотин С.В., Сметанина К.Е., Табачкова Н.Ю. Исследование прочности, релаксационной и коррозионной стойкости ультрамелкозернистой аустенитной стали 08Х18Н10Т, полученной методом РКУ-прессования. I. Исследование микроструктуры и прочности // Металлы. 2023. № 4. С. 60–75.
- Gupta R.K., Birbilis N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review // Cor. Sci. 2015. V. 92. P. 1–15.
- Shit G., Ningshen S. The effect of severe plastic deformation on the corrosion resistance of AISI type 304L stainless steel // J. Mater. Eng. Perform. 2020. V. 29. P. 5696–5709.
- He Q., Wei W., Wang M.-S., Guo F.-J., Zhai Y., Wang Y.-F., Huang C.-X. Gradient microstructure design in stainless steel: A strategy for uniting strength-ductility synergy and corrosion resistance // Nanomaterials. 2021. V. 11. P. 2356.
- Tiamiyu A.A., Eduok U., Odeshi A.G., Szpunar J.A. Effect of prior plastic deformation and deformation rate on the corrosion resistance of AISI 321 austenitic stainless steel // Mater. Sci. Eng. A. 2019. V. 745. P. 1–9.
- Chen X., Gussev M., Balonis M., Bauchy M., Sant G. Emergence of micro-galvanic corrosion in plastically deformed austenitic stainless steel // Mater. Des. 2021. V. 203. P. 109614.
- Pisarek M., Kedzierzawski P., Janik-Czachor M., Kurzydlowski K.J. Effect of hydrostatic extrusion on passivity breakdown on 303 austenitic stainless steel in chloride solution // J. Solid State Electrochem. 2009. V. 13. P. 283–291.
- Krawczynska A.T., Gloc M., Lublinska K. Intergranular corrosion resistance of nanostructured austenitic stainless steel // J. Mater. Sci. 2013. V. 48. No. 13. P. 4517–4523.
- Krawczynska A.T., Chrominski W., Ura-Binczyk E., Kulczyk M., Lewandowska M. Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusion // Mater. Des. 2017. V. 136. P. 34–44.
- Miyamoto H. Corrosion of ultrafine grained materials by severe plastic deformation, an overview // Mater. Trans. 2016. V. 57. No. 5. P. 559–572.
- Ura-Bińczyk E. Effect of grain refinement on the corrosion resistance of 316L stainless steel // Materials. 2021. V. 14. No. 24. P. 7517.
- Jinlong L., Hongyun L., Tongxiang L., Wenli G. The effect of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steel // Mater. Res. Bull. 2015. V. 70. P. 896–907.
- Hung E., Prasath Babu R., Monnet I., Etienne A., Moisy F., Pralong V., Enikeev N., Abramova M., Sauvage X., Radiguet B. Impact of nanostructuration on the corrosion resistance and hardness of irradiated 316 austenitic stainless steels // Appl. Surf. Sci. 2017. V. 392. P. 1026–1035.
- Wang S.G., Sun M., Xu Y.H., Long K., Zhang Z.D. Enhanced localized and uniform corrosion resistances of bulk nanocrystalline 304 stainless steel in high-concentration hydrochloric acid solutions at room temperature // J. Mater. Sci. Technol. 2018. V. 34. No. 12. P. 2498–2506.
- Tiamiyu A.A., Eduok U., Szpunar J.A., Odeshi A.G. Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media // Sci. Rep. 2019. V. 9. P. 12116.
- Wang S.G., Sun M., Liu S.Y., Liu X., Xu Y.H., Gong C.B., Long K., Zhang Z.D. Synchronous optimization of strengths, ductility and corrosion resistances of bulk nanocrystalline 304 stainless steel // J. Mater. Sci. Technol. 2020. V. 37. P. 161–172.
- Lei Y.B., Wang Z.B., Zhang B., Luo Z.P., Lu J., Lu K. Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing // Acta Mater. 2021. V. 208. P. 116773.
- Mordyuk B.N., Prokopenko G.I., Vasylyev M.A., Iefimov M.O. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel // Mater. Sci. Eng. A. 2007. V. 458. No. 1–2. P. 253–261.
- Feng W., Wang Z., Sun Q., He Y., Sun Y. Effect of thermomechanical processing via rotary swaging on grain boundary character distribution and intergranular corrosion in 304 austenitic stainless steel // J. Mater. Res. Technol. 2022. V. 19. P. 2470–2482.
- Järvenpää A., Jaskari M., Kisko A., Karjalainen P. Processing and properties of reversion-treated austenitic stainless steels // Metals. 2020. V. 10. P. 281.
- Panov D.O., Chernichenko R.S., Naumov S.V., Pertcev A.S., Stepanov N.D., Zherebtsov S.V., Salishchev G.A. Excellent strength-toughness synergy in metastable austenitic stainless steel due to gradient structure formation // Mater. Lett. 2021. V. 303. P. 130585.
- Panov D., Kudryavtsev E., Chernichenko R., Smirnov A., Stepanov N., Simonov Y., Zherebtsov S., Salishchev G. Mechanisms on the reverse martensite-to-austenite transformation in metastable austenitic stainless steel // Metals. 2021. V. 11. P. 599.
- Misra R.D.K., Nayak S., Mali S.A., Shah J.S., Somani M.C., Karjalainen L.P. Microstructure and deformation behavior of phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel // Metall. Mater. Trans. A. 2009. V. 40. P. 2498–2509.
- Amininejad A., Jamaati R., Hosseinipour S.J. Improvement of strength-ductility balance of SAE 304 stainless steel by asymmetric cross rolling // Mater. Chem. Phys. 2020. V. 256. P. 123668.
- Li J., Cao Y., Gao B., Li Y., Zhu Y. Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure // J. Mater. Sci. 2018. V. 53. P. 10442–10456.
- Shirdel M., Mirzadeh H., Parsa M.H. Enhanced mechanical properties of microalloyed austenitic stainless steel produced by martensite treatment // Adv. Eng. Mater. 2015. V. 17. P. 1226–1233.
- Misra R.D.K., Wan X.L., Challa V.S.A., Somani M.C., Murr L.E. Relationship of grain size and deformation mechanism to the fracture behavior in high strength — high ductility nanostructured austenitic stainless steel // Mater. Sci. Eng. A. 2015. V. 626. P. 41–50.
- Rybal’chenko O.V., Dobatkin S.V., Kaputkina L.M., Raab G.I., Krasilnikov N.A. Strength of ultrafine-grained corrosion-resistance steels after severe plastic deformation // Mater. Sci. Eng. A. 2004. V. 387–389. P. 244–248.
- Dobatkin S.V., Rybal’chenko O.V., Raab G.I. Structure formation, phase transformations and properties in Cr-Ni austenitic steel after equal-channel angular pressing and heating // Mater. Sci. Eng. A. 2007. V. 463. P. 41–45.
- Mao Q., Li J., Zhao Y. A review on mechanical properties and microstructure of ultrafine-grained metals and alloys processed by rotary swaging // J. Alloys Compds. 2022. V. 896. P. 163122.
- Mao Q., Chen X., Li J., Zhao Y. Nano-gradient materials prepared by rotary swaging // Nanomaterials. 2021. V. 11. P. 2223.
- Rybalchenko O., Torganchuk V., Rybalchenko G., Martynenko N., Lukyanova E., Tokar A., Prosvirin D., Yusupov V., Dobatkin S. Effect of rotary swaging on microstructure and properties of Cr–Ni–Ti austenitic stainless steel // Metals. 2023. V. 13. P. 1760.
- Panov D., Kudryavtsev E., Naumov S., Klimenko D., Chernichenko R., Mirontsov V., Stepanov N., Zherebtsov S., Salishchev G., Pertcev A. Gradient microstructure and texture formation in a metastable austenitic stainless steel during cold rotary swaging // Materials. 2023. V. 16. P. 1706.
- Kunčická L. Structural phenomena introduced by Rotary Swaging: A review // Materials. 2024. V. 17. No. 2. P. 466.
- Чувильдеев В.Н., Копылов В.И., Нохрин А.В., Бахметьев А.М., Тряев П.В., Табачкова Н.Ю., Чегуров М.К., Козлова Н.А., Михайлов А.С., Ершова А.В., Грязнов М.Ю., Шадрина Я.С., Лихницкий К.В., Степанов С.П., Мышляев М.М. Повышение прочности и коррозионной стойкости титанового сплава ПТ-7М с использованием технологии ротационной ковки // Металлы. 2021. № 3. С. 37–48.
- Панов Д.О., Кудрявцев Е.А., Наумов С.В., Перцев А.С., Симонов Ю.Н., Салищев Г.А. Эволюция градиентной структуры при термической обработке метастабильной аустенитной нержавеющей стали, подвергнутой холодной радиальной ковке // МИТОМ. 2023. № 8 (818). С. 58–66.
- Wang Q., Chen S., Lv X., Jiang H., Rong L. Role of d-ferrite in fatigue crack growth of AISI 316 austenitic stainless steel // J. Mater. Sci. Technol. 2022. V. 114. P. 7–15.
- Warren A.D., Griffiths I.J., Harniman R.L., Flewitt P.E.J., Scott T.B. The role of ferrite in type 316H austenitic stainless steels on the susceptibility to creep cavitation // Mater. Sci. Eng. A. 2015. V. 635. P. 59–69.
- Talonen J., Hänninen H., Nenonen P., Pape G. Effect of strain rate on the strain-induced γ→α′-martensite transformation and mechanical properties of austenitic stainless steels // Metall. Mater. Trans. A. 2005. V. 36. P. 421–432.
- Min K.S., Nam S.W. Correlation between characteristics of grain boundary carbides and creep-fatigue properties in AISI 321 stainless steel // J. Nucl. Mater. 2003. V. 322. P. 91–97.
Supplementary files
