Влияние мелатонина и обезвоживания на уровень пол и дыхание зародышей семян гороха, рост проростков и окислительную активность митохондрий эпикотилей

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Исследовали влияние предобработки 0.1 мкМ мелатонином и кратковременного обезвоживания набухающих семян на водный дефицит, уровень ПОЛ и дыхание зародышей, а также последующий рост эпикотилей проростков гороха (Pisum sativum L.) и окислительную активность выделенных из них митохондрий. Две группы зародышей одинакового возраста, но отличающихся по весу и по стадии развития исследовали отдельно: набухшие зародыши, но не прорвавшие оболочки семени (группа 1) и проклюнувшиеся зародыши (группа 2). Уровень водного дефицита зародышей 1 и 2 группы в отсутствие доступа воды повышался на 8.7 и 6.9% соответственно, что оказалось чувствительным для дыхательной активности зародышей. Было показано, что зародыши группы 2, прорвавшие оболочку семени и вступившие в контакт с кислородом воздуха, переживали резкий подъем дыхательной активности, который был сопряжен с повышением уровня ПОЛ, регистрируемого по накоплению продуктов, реагирующих с тиобарбитуровой кислотой. Кратковременное обезвоживание тормозило дыхание зародышей этой группы, связанное с активностью цитохромного пути, но не сопровождалось возникновением окислительного стресса, а напротив, снижало уровень ПОЛ. У набухших, но не прорвавших оболочку семени зародышей группы 1 также отсутствовал окислительный стресс при обезвоживании. Предобработка мелатонином существенно повышала активность цитохромного пути дыхания у обеих групп зародышей, как в контроле, так и у подвергнутых обезвоживанию семян. У митохондрий, выделенных из эпикотилей 5-дневных проростков, выросших из семян, предобработанных мелатонином и подвергнутых обезвоживанию, наблюдалась активация окисления НАД-зависимого субстрата (малата), как в контрольных, так и в стрессовых условиях. Также было показано, что предобработка мелатонином стимулировала рост эпикотилей проростков группы 2 во всех вариантах опытов, тогда как у проростков группы 1 только после действия обезвоживания. Сделан вывод, что предобработка семян мелатонином стимулировала процесс дыхания зародышей за счет активации цитохромного пути, а также активировала окисление малатамитохондриями эпикотилей проростков и действовала как стимулятор роста эпикотилей после обезвоживания. Впервые показано, что кратковременное обезвоживание тканей зародыша может не сопровождаться окислительным стрессом.

全文:

受限制的访问

作者简介

И. Генерозова

Федеральное Государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

编辑信件的主要联系方式.
Email: igenerozova@mail.ru
俄罗斯联邦, Москва

С. Васильев

Федеральное Государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: igenerozova@mail.ru
俄罗斯联邦, Москва

П. Буцанец

Федеральное Государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: igenerozova@mail.ru
俄罗斯联邦, Москва

А. Шугаев

Федеральное Государственное бюджетное учреждение науки Институт физиологии растений им. К.А. Тимирязева Российской академии наук

Email: igenerozova@mail.ru
俄罗斯联邦, Москва

参考

  1. Aflaki F., Sedghi M., Pazuki A., Pessarakli M. Investigation of seed germination indices for early selection of salinity tolerant genotypes: A case study in wheat // Emirates J. Food and Agricult. 2017. V. 29. P. 222. https://doi.org/10.9755/ejfa.2016-12-1940
  2. Farooq M.A., Ma W., Shen S., Gu A. Underlying biochemical and molecular mechanisms for seed germination // IJMS. 2022. V. 23. P. 8502. https://doi.org/10.3390/ijms23158502
  3. Czosnowski J. Metabolism of excised embryos of Lupinus luteus L. Effect of metabolic inhibitors and growth substances on the water uptake // Acta Soc. Bot. Pol. 1962. V. 31. P. 135.
  4. Nawa Y., Asahi T. Rapid development of mitochondria in pea cotyledons during the early stage of germination // Plant Physiol. 1971. V. 48. P. 671. https://doi.org/10.1104/pp.48.6.671
  5. Sato S., Asahi T. Biochemical properties of mitochondrial membrane from dry pea seeds and changes in properties during imbibition // Plant Physiol. 1975. V. 58. P. 816.
  6. Logan D.C., Millar A.H., Sweetlove L.J., Hill S.A., Leaver C.J. Mitochondrial biogenesis during germination in maize embryos // Plant Physiol. 2001. V. 125. P. 662.
  7. Nawa Y., Asahi T. Relationship between the water content of pea cotyledons and mitochondrial development during the early stage of germination // Plant Cell Physiol. 1973. V. 14. P. 607.
  8. Raymond P., Al-Ani A., Pradet A. ATP production by respiration and fermentation, and energy charge during aerobiosis and anaerobiosis in twelve fatty and starchy germinating seeds // Plant Physiol. 1985. V. 79. P. 879.
  9. Al-Ani A., Bruzau F., Raymond P., Saint-Ges V., Leblanc J.M., Pradet A. Germination, respiration, and adenylate energy charge of seeds at various oxygen partial pressures // Plant Physiol. 1985. V. 79. P. 885.
  10. Hourmant A., Pradet A. Oxidative phosphorylation in germinating lettuce seeds (Lactuca sativa) during the first hours of imbibition // Plant Physiol. 1981. V. 68. P. 631. https://doi.org/10.1104/pp.68.3.631
  11. Leprince O., van der Werf A., Deltour R., Lambers H. Respiratory pathways in germinating maize radicles correlated with desiccation tolerance and soluble sugars // Physiol. Plant. 1992. V. 85. P. 581.
  12. Leprince O., Atherton N.M., Deltour R., Hendry C.A.F. The lnvolvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L. // Plant Physiol. 1994. V. 104. P. 1333.
  13. Bailly C. Active oxygen species and antioxidants in seed biology // Seed Sci. Res. 2004. V. 14. P. 93. https://doi.org 10.1079/SSR2004159
  14. Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy // Biochem. J. 2019. V. 476. P. 3019. https://doi.org/10.1042/BCJ20190159
  15. Kranner I., Roach T., Beckett R.P., Whitaker C., Minibayeva F.V. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum // J. Plant Physiol. 2010. V. 167. P. 805. https://doi org/10.1016/j.jplph.2010.01.019
  16. Bai Y., Xiao S., Zhang Z., Zhang Y., Sun H., Zhang K., Wang X., Bai Z., Li C., Liu L. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat // Peer J. 2020. 8:e9450. https://doi org/10.7717/peerj.9450
  17. Farooq M., Wahid A., Ahmad N., Asad S.A. Comparative efficacy of surface drying and re-drying seed priming in rice: changes in emergence, seedling growth and associated metabolic events // Paddy Water Environ. 2010. V. 8. P. 15. https://doi org/10.1007/s10333-009-0170-1
  18. Zhang N., Zhao B., Zhang H.J., Weeda S., Yang C., Yang Z.C., Ren S., Guo Y.D. Melatonin promotes water-stress tolerance, lateral root formation and seed germination in cucumber (Cucumis sativus L.) // J. Pineal Res. 2013. V. 54. P. 15. https://doi org/10.1111/j.1600-079X.2012.01015.x
  19. Liu J., Wang W., Wang L., Sun Y. Exogenous melatonin improves seedling health index and drought tolerance in tomato // Plant Growth Regul. 2015. V. 77. P. 317. https://doi org/10.1007/s10725-015-0066-6
  20. Hankl F., Çingi M., Akinkl H. Influence of l-tryptophan and melatonin on germination of onion and leek seeds at different temperatures // Turk. J. Agric. Res. 2019. V. 6. P. 214.
  21. Hernandez I.G., Gomez F.V., Cerutti S., Arana M.V., Silva M.F. Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations // Plant Physiol. Biochem. 2015. V. 94. P. 191. https://doi.org/10.1016/j.plaphy.2015.06.011
  22. Lv Y., Pan J., Wang H., Reiter R.J., Li X., Mou Z., Zhang J., Yao Z., Zhao D., Yu D. Melatonin inhibits seed germination by crosstalk with abscisic acid, gibberellin, and auxin in Arabidopsis // J. Pineal Res. 2021. V. 70. P. 1. https://doi org/10.1111/jpi.12736
  23. Wang W.Q., Cheng H.-Y., Møller I.M., Song S.-Q. The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds // Phys. Plant. 2012. V. 144. P. 20. https://doi org/10.1111/j.1399-3054.2011.01518.x
  24. Zhigacheva I.V., Binyukov V.I., Generozova I.P., Mil E.M., Krikunova N.I., Rasulov M.M., Albantova A.A. Sodium 2-dithiosulphate-tetranitrosyl diferrate tetrahydrate prevents heat shock-induced mitochondria dysfunction // Rus. J. Plant Physiol. 2022. V. 69. P. 198. https://doi org/10.1134/S1021443722010228
  25. Li Y., Wang Y., Xue H., Pritchard H.W., Wang X. Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds // Plant Physiol. Biochem. 2017. V. 114. P. 72. http://dx.doi.org/10.1016/j.plaphy.2017.02.023
  26. El-Maarouf-Bouteau H., Bailly C. Oxidative signaling in seed germination and dormancy // Plant Sign.Behav. 2008. V. 3. P. 175.
  27. McDonald A.E., Sieger S.M., Vanlerberhe G.C. Methods and approaches to study plant mitochondrial oxidase // Physiol. Plant. 2002. V. 116. P. 135.
  28. Generozova I.P., Vasilyev S.V., Butsanets P.A., Shugaev A.G. Combined action of melatonin and water deficiency on growth and MDA content of hypocotyls and roots of lupine and respiration of mitochondria isolated from these organs // Russ J. Plant Physiol. 2022. V. 69. P. 93. https://doi org/10.1134/S1021443722050077
  29. Schmitt N., Dizengremel P. Effect of osmotic stress on mitochondria isolated from etiolated mung bean and sorghum seedlings // Plant Physiol. Biochem. 1989. V. 27. P. 1.
  30. Hodges D.M., DeLong J.M., Forney C.F. Prange R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds // Planta. 1999. V. 207. P. 604.
  31. Grelet J., Benamar A., Teyssier E., Avelang-Macherel M.H., Grunwald D., Macherel D. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying // Plant Physiol. 2005. V. 137. P. 157.
  32. Tolleter D., Jaquinod M., Mangavel C., Passirani C., Saulnier P., Manon S., Teyssier E., Patet N., Avelange-Macherel M.-H., Macherel D. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by dessication // Plant Cell. 2007. V. 19. P. 1580.
  33. Sew Y.S., Ströher E., Fenske R., Millar A.H. Loss of mitochondrial malate dehydrogenase activity alters seed metabolism impairing seed maturation and post-germination growth in Arabidopsis // PlantPhysiol. 2016. V. 171. P. 849. https://doiorg/10.1104/pp.16.01654

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The effect of dehydration and melatonin treatment on the water deficiency of germ tissues of group 1 (1) and group 2 (2) 18-hour pea seeds. Experimental options: I – control seeds, II – seeds after treatment with melatonin, III – seeds after dehydration, IV – seeds after dehydration and treatment with melatonin. The figures show the arithmetic averages and their standard errors. Statistically significant differences between the mean values were determined using the Raglan test in the ANOVA program, the results marked with different letters are statistically significant at P < 0.05.

下载 (89KB)
3. Fig. 2. The effect of dehydration and melatonin treatment on the content of TBK-RP in the tissues of embryos of group 1 (1) and group 2 (2) of 18-hour pea seeds. Experimental options: I – control seeds, II – seeds after treatment with melatonin, III – seeds after dehydration, IV – seeds after dehydration and treatment with melatonin. The figures show the arithmetic averages and their standard errors. Statistically significant differences between the mean values were determined using the Raglan test in the ANOVA program, the results marked with different letters are statistically significant at P < 0.05.

下载 (92KB)
4. Fig. 3. The effect of dehydration and melatonin treatment on the rate of oxygen uptake by embryos of group 1 of 18-hour seeds: (1) – the rate of oxygen uptake by embryos (Vc); (2) – activity of the cytochrome respiratory pathway; (3) – maximum activity of the alternative respiratory pathway; (4) – residual respiration. Experimental options: I – control seeds, II – seeds after treatment with melatonin, III – seeds after dehydration, IV – seeds after dehydration and treatment with melatonin. The figures show the arithmetic averages and their standard errors. Statistically significant differences between the average values of the experimental and control samples were determined using the Tukey test in the ANOVA program, the results related to the corresponding substrate (1 or 2), marked with different letters, are statistically significant at P < 0.05.

下载 (113KB)
5. Fig. 4. The effect of dehydration and melatonin treatment on the rate of oxygen uptake by embryos of group 2 of 18-hour seeds: (1) – the rate of oxygen uptake by embryos (Vc); (2) – activity of the cytochrome respiratory pathway; (3) – maximum activity of the alternative respiratory pathway; (4) – residual respiration. Experimental options: I – control seeds, II–seeds after treatment with melatonin, III – seeds after dehydration, IV – seeds after dehydration and treatment with melatonin. The figures show the arithmetic averages and their standard errors. Statistically significant differences between the average values of the experimental and control samples were determined using the Tukey test in the ANOVA program, the results related to the corresponding substrate (1 or 2), marked with different letters, are statistically significant at P < 0.05.

下载 (106KB)
6. Fig. 5. The effect of dehydration and melatonin treatment on the epicotyl length of 5-day pea seedlings grown from seeds of group (1) and group 2 embryos (2). Experimental options: I – control seeds, II – seeds after treatment with melatonin, III – seeds after dehydration, IV – seeds after dehydration and melatonin treatments. The figures show the arithmetic averages and their standard errors. Statistically significant differences between the mean values were determined using the Raglan test in the ANOVA program, the results marked with different letters are statistically significant at P < 0.05.

下载 (104KB)
7. Fig. 6. The effect of dehydration and melatonin treatment on respiration and activity of various oxidation pathways of malate (a) and succinate (b) by the mitochondria of epicotyles of 5-day pea seedlings: (1) – the rate of oxidation of substrates in state 3 (V3); (2) – the rate of oxidation of substrates along the cytochrome pathway (Vcit); (3) – the rate of oxidation of substrates by an alternative pathway (Valt); (4) is the rate of residual respiration (Vost). Experimental options: I – control seeds, II–seeds after treatment with melatonin, III – seeds after dehydration, IV – seeds after dehydration and treatment with melatonin. The figures show the arithmetic averages and their standard errors. Statistically significant differences between the average values of the experimental and control samples were determined using the Tukey test in the ANOVA program, the results related to the corresponding substrate (1 or 2), marked with different letters, are statistically significant at P < 0.05.

下载 (198KB)

版权所有 © Russian Academy of Sciences, 2024