Drosophila melanogaster MLE Helicase functions beyond dosage compensation: molecular nature and pleiotropic effect of mle[9]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

MLE of D. melanogaster is a conserved protein in higher eukaryotes, an ortholog of human DHX9 helicase. In mammals, this helicase has been shown to participate in different stages of gene expression. In D. melanogaster, the role of MLE as one of the components of the species-specific Dosage Compensation Complex has been extensively studied. However, the role of MLE in other processes has remained poorly understood. In this work, for the first time, the mle[9] mutation is mapped at the molecular level and shown to be caused by a deletion resulting in the loss of a highly conserved motif III in the catalytic core of the molecule. Thus, mle[9] specifically disrupts the helicase activity of the protein without affecting the function of other domains. The study of phenotypic manifestations of the mutation in females showed that in the homozygous state it has a pleiotropic effect. Without affecting survival, it significantly reduces fertility and lifespan. In addition, the duplication of scutellar macrochaetae was observed with high frequency. These results confirm that in D. melanogaster MLE helicase is involved in a wide range of gene expression regulation processes distinct from its role in dosage compensation.

Full Text

Restricted Access

About the authors

G. A. Ashniev

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: julia.v.nikolenko@gmail.com
Russian Federation, Moscow, 119991

S. G. Georgieva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: julia.v.nikolenko@gmail.com
Russian Federation, Moscow, 119991

J. V. Nikolenko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Author for correspondence.
Email: julia.v.nikolenko@gmail.com
Russian Federation, Moscow, 119991

References

  1. Singleton M.R., Dillingham M.S., Wigley D.B. Structure and mechanism of helicases and nucleic acid translocases // Annu. Rev. Biochem. 2007. V. 76. № 1. P. 23–50. https://doi.org/10.1146/annurev.biochem.76.052305.115300
  2. Fairman-Williams M.E., Guenther U.-P., Jankowsky E. SF1 and SF2 helicases: family matters // Curr. Opin. Struct. Biol. 2010. V. 20. № 3. P. 313–324. https://doi.org/10.1016/j.sbi.2010.03.011
  3. Lee C.G., Hurwitz J. Human RNA helicase A is homologous to the maleless protein of Drosophila // J. Biolo. Chem. 1993. V. 268. № 22. P. 16822–16830. https://doi.org/10.1016/S0021-9258(19)85490-X
  4. Wei W., Twell D., Lindsey K. A novel nucleic acid helicase gene identified by promoter trapping in Arabidopsis // The Plant J. 1997. V. 11. № 6. P. 1307–1314. https://doi.org/10.1046/j.1365-313X.1997.11061307.x
  5. Zhang S., Maacke H., Grosse F. Molecular cloning of the gene encoding nuclear DNA helicase II. A bovine homologue of human RNA helicase A and Drosophila Mle protein // J. Biol. Chem. 1995. V. 270. № 27. P. 16422–16427. https://doi.org/10.1074/JBC.270.27.16422
  6. Lee T., Pelletier J. The biology of DHX9 and its potential as a therapeutic target // Oncotarget. 2106. V. 7. № 27. P. 42716–42739. https://doi.org/10.18632/oncotarget.8446
  7. Николенко Ю.В., Георгиева С.Г., Копытова Д.В. Разнообразие функций хеликазы MLE в регуляции экспрессии генов у высших эукариот // Мол. биология. 2023. T. 57. № 1. С. 10-23. https://doi.org/10.31857/S0026898423010123
  8. Prabu J.R., Müller M., Thomae A.W. et al. Structure of the RNA helicase MLE reveals the molecular mechanisms for uridine specificity and RNA-ATP coupling // Mol. Cell. 2015. V. 60. № 3. P. 487–499. https://doi.org/10.1016/j.molcel.2015.10.011
  9. Aratani S., Kageyama Y., Nakamura A. et al. MLE activates transcription via the minimal transactivation domain in Drosophila // Int. J. Mol. Med. 2008. V. 21. № 4. P. 469–476. https://doi.org/10.3892/ijmm.21.4.469
  10. Izzo A., Regnard C., Morales V. et al. Structure-function analysis of the RNA helicase maleless // Nucl. Acids Res. 2008. V. 36. № 3. P. 950–962. https://doi.org/10.1093/nar/gkm1108
  11. Kuroda M.I., Kernan M.J., Kreber R. et al. The maleless protein associates with the X chromosome to regulate dosage compensation in drosophila // Cell. 1991. V. 66. № 5. P. 935–947. https://doi.org/10.1016/0092-8674(91)90439-6
  12. Lee C.-G. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation // EMBO J. 1997. V. 16. № 10. P. 2671–2681. https://doi.org/10.1093/emboj/16.10.2671
  13. Kuroda M.I., Hilfiker A., Lucchesi J.C. Dosage compensation in Drosophila – a model for the coordinate regulation of transcription // Genetics. 2016. V. 204. № 2. https://doi.org/10.1534/genetics.115.185108
  14. Samata M., Akhtar A. Dosage compensation of the X chromosome: A complex epigenetic assignment involving chromatin regulators and long noncoding RNAs // Annu. Rev. Biochem. 2018. V. 87. https://doi.org/ 10.1146/annurev-biochem-062917-011816
  15. Cugusi S., Kallappagoudar S., Ling H., Lucchesi J.C. The Drosophila helicase Maleless (MLE) is implicated in functions distinct from its role in dosage compensation // Mol. Cell. Proteomics. 2015. V. 14. № 6. P. 1478–1488. https://doi.org/10.1074/mcp.M114.040667
  16. Николенко Ю.В., Куршакова М.М., Краснов А.Н. Мультифункциональный белок ENY2 взаимодействует с РНК-хеликазой MLE // ДАН. 2019. Т. 489. С. 637–640. https://doi.org/10.31857/S0869-56524896637-640
  17. Николенко Ю.В., Куршакова М.М., Краснов А.Н., Георгиева С.Г. Хеликаза MLE – новый участник регуляции транскрипции гена ftz-f1, кодирующего ядерный рецептор у высших эукариот // ДАН. Науки о жизни. 2021. Т. 496. С. 48–51. https://doi.org/10.31857/S2686738921010182
  18. Kernan M.J., Kuroda M.I., Kreber R. et al. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle a regulator of X chromosome transcription // Cell. 1991. V. 66. № 5. P. 949–959. https://doi.org/10.1016/0092-8674(91)90440-A
  19. Николенко Ю.В., Краснов А.Н., Воробьева Н.Е. Ремоделирующий хроматин комплекс SWI/SNF влияет на пространственную организацию локуса гена ftz-f1 // Генетика. 2019. Т. 55. С. 156–164. https://doi.org/10.1134/S0016675819020115
  20. Николенко Ю.В., Краснов А.Н., Мазина М.Ю. и др. Изучение свойств нового экдизонзависимого энхансера // ДАН. 2017. Т. 474. С. 756–759. https://doi.org/10.7868/S0869565217180219
  21. Vorobyeva N.E., Nikolenko J.V., Nabirochkina E.N. et al. SAYP and Brahma are important for “repressive” and “transient” Pol II pausing // Nucl. Acids Res. 2012. V. 40. № 15. P. 7319–7331. https://doi.org/10.1093/nar/gks472
  22. Фурсова Н.А., Николенко Ю.В., Сошникова Н.В. и др. Белок CG9890 с доменами цинковых пальцев - новый компонент ENY2-содержащих комплексов дрозофилы // Acta Naturae. 2018. Т. 10. С. 110–114. https://doi.org/10.32607/20758251-2018-10-4-110-114
  23. Николенко Ю.В., Вдовинa Ю.А., Фефеловa Е.И. и др. Деубиквитинирующий (DUB) модуль SAGA участвует в Pol III-зависимой транскрипции // Мол. биология. 2021. Т. 55. С. 1–10. https://doi.org/10.31857/S0026898421030137
  24. Kopytova D.V., Krasnov A.N., Orlova A.V. et al. ENY2: couple, triple...more? // Cell Cycle. 2010. V. 9. № 3. P. 479–481. https://doi.org/10.4161/cc.9.3.10610
  25. Gurskiy D., Orlova A., Vorobyeva N.et al. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila // Nucl. Acids Res. 2012. V. 40. № 21. P. 10689–10700. https://doi.org/10.1093/nar/gks857
  26. Popova V.V., Orlova A.V., Kurshakova M.M. et al. The role of SAGA coactivator complex in snRNA transcription // Cell Cycle. 2018. V. 17. № 15. P. 1859–1870. https://doi.org/10.1080/15384101.2018.1489175
  27. Kopytova D.V., Orlova A.V., Krasnov A.N. et al. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA // Genes Dev. 2010. V. 24. № 1. P. 86–96. https://doi.org/10.1101/gad.550010
  28. Morra R., Smith E.R., Yokoyama R., Lucchesi J.C. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting // Mol. Cell. Biol. 2008. V. 28. № 3. P. 958–966. https://doi.org/10.1128/MCB.00995-07
  29. Pause A., Sonenberg N. Mutational analysis of a DEAD box RNA helicase: The mammalian translation initiation factor eIF-4A // EMBO J. 1992. V. 11. № 7. P. 2643–2654. https://doi.org/10.1002/J.1460-2075.1992.TB05330.X
  30. Figueiredo M.L.A., Kim M., Philip P. et al. Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions // PLoS Genet. 2014. V. 10. № 12. https://doi.org/10.1371/JOURNAL.PGEN.1004865
  31. Fergestad T., Ganetzky B., Palladino M.J. Neuropathology in Drosophila membrane excitability mutants // Genetics. 2006. V. 172. № 2. P. 1031–1042. https://doi.org/10.1534/GENETICS.105.050625
  32. Reenan R.A., Hanrahan C.J., Ganetzky B. The mlenapts RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing // Neuron. 2000. V. 25. № 1. P. 139–149. https://doi.org/10.1016/S0896-6273(00)80878-8
  33. Hanrahan C.J., Palladino M.J., Ganetzky B., Reenan R.A. RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation // Genetics. 2000. V. 155. № 3. P. 1149–1160. https://doi.org/10.1093/genetics/155.3.1149
  34. Lee T., Di Paola D., Malina A. et al. Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner // J. Biol. Chem. 2014. V. 289. № 33. P. 22798–22814. https://doi.org/10.1074/JBC.M114.56853535
  35. Pazos Obregón F., Palazzo M., Soto P. et al. An improved catalogue of putative synaptic genes defined exclusively by temporal transcription profiles through an ensemble machine learning approach // BMC Genomics. 2019. V. 20. № 1. P. 1011. https://doi.org/10.1186/s12864-019-6380-z
  36. Lin S., Huang Y., Lee T. Nuclear receptor unfulfilled regulates axonal guidance and cell identity of Drosophila mushroom body neurons // PLoS One. 2009. V. 4. № 12. https://doi.org/10.1371/journal.pone.0008392
  37. Iyer E.P., Iyer S.C., Sullivan L. et al. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning // PLoS One. 2013. V. 8. № 8. https://doi.org/10.1371/journal.pone.0072434
  38. Boulanger A., Clouet-Redt C., Farge M. et al. ftz-f1 and Hr39 opposing roles on EcR expression during Drosophila mushroom body neuron remodeling // Nat. Neurosci. 2011. V. 14. № 1. P. 3–44. https://doi.org/10.1038/nn.2700
  39. Calame D. G., Guo T., Wang C. et al. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot–Marie–Tooth disease // Am. J. Hum. Genet. 2023. V. 110. № 8. P. 1394–1413. https://doi.org/10.1016/j.ajhg.2023.06.013
  40. Castelli L. M., Benson B. C., Huang W.-P. et al. RNA helicases in microsatellite repeat expansion disorders and neurodegeneration // Front. Genet. 2022. V. 13 https://doi.org/10.3389/fgene.2022.886563
  41. Walstrom K.M., Schmidt D., Bean C.J., Kelly W.G. RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans // Mech. Dev. 2005. V. 122. № 5. P. 707–720. https://doi.org/10.1016/J.MOD.2004.12.002
  42. Campuzano S., Modolell J. Patterning of the Drosophila nervous system: The achaete–scute gene complex // Trends in Genetics. 1992. V. 8. № 6. P. 202–208. https://doi.org/10.1016/0168-9525(92)90234-U
  43. Cubas P., De Celis J.F., Campuzano S., Modolell J. Proneural clusters of achaete–scute expression and the generation of sensory organs in the Drosophila imaginal wing disc // Genes Dev. 1991. V. 5. № 6. P. 996–1008. https://doi.org/10.1101/GAD.5.6.996
  44. Villares R., Cabrera C.V. The achaete–scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc // Cell. 1987. V. 50. № 3. P. 415–424. https://doi.org/10.1016/0092-8674(87)90495-8
  45. Cabrera C.V., Alonso M.C. Transcriptional activation by heterodimers of the achaete–scute and daughterless gene products of Drosophila // EMBO J. 1991. V. 10. № 10. P. 2965–2974. https://doi.org/10.1002/J.1460-2075.1991.TB07847.X
  46. Usui K., Goldstone C., Gibert J.-M., Simpson P. Redundant mechanisms mediate bristle patterning on the Drosophila thorax. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 51. P. 20112–20117. https://doi.org/10.1073/pnas.0804282105

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecular mapping of the mle mutation[9] at the DNA and mRNA levels. a is a schematic representation of the mle gene and its transcripts. mle-RA is a transcript encoding a full-length protein; mle–RC is a hypothetical transcript. Asterisks indicate the sites of HincII restriction endonuclease; arrows indicate the position of probes 1, 2 and 3 used to map the deletion; a black triangle indicates the exact position of the deletion that we have established. The black segments indicate the position of the probes for measuring the level of mle transcription “above” (4) and “below” (5) deletion; b is a fragment of the nucleotide sequence in the area of mle deletion[9] in DNA and cDNA. In DNA, the intron sequence is indicated in lowercase letters, the exon sequence is indicated in uppercase letters; the sequence deleted in the mle mutation[9] is highlighted in gray, AG dinucleotides are emphasized – acceptor splicing sites in the wild–type gene and in the mutation.

Download (130KB)
3. Fig. 2. The structure of the MLE protein in mle mutants[9]. a is the amino acid sequence of the MLE protein. The deletion is highlighted in gray; b is the MLE domain structure (cit. according to [7] with changes). The areas corresponding to certain domains are indicated in gray, and the linker areas are indicated in white. Two dsRNA binding domains are presented – dsRBD1 and dsRBD2, the minimal MTAD transactivation domain, the catalytic “core” consisting of the recA1 and RecA2 domains and the helicase-associated HA2 domain, the binding region of the oligosaccharide/oligonucleotide OB-fold, the nuclear localization signal NLS, the glycine-rich C-terminal domain Gly. Conservative motifs are indicated by Roman numerals, the position of the deletion is indicated by a black arrow; c is the alignment of the sequence containing motif III in representatives of different species. Similar in different types of a.o. are highlighted in bold, identical to a.o. highlighted in bold and underlined. The deletion of mle[9] is highlighted in gray.

Download (601KB)
4. 3. The mle mutation[9] does not disrupt gene expression in vivo in homozygous females. a – transcription of mle in females with mle mutation[9]. The mle transcription level in imago was measured relative to the transcription level of the control gene β-Tubulin56D. Probes located “above” (5ʹ) and “below” (3ʹ) the mle deletion were used[9]. Heterozygous females of the same line (+/–) were used as a positive control. Error bars indicate the standard measurement error; b – Western analysis of MLE protein expression in larvae and pupae. L – wandering faces L3, P – pupae, age one day; “–/–” – homozygous, “+/–” – heterozygous, “+/+” – Oregon R. A nuclear extract of 10 individuals is applied to each track of the gel.

Download (102KB)
5. Fig. 4. Mutation of mle[9] in the homozygous state reduces the lifespan of females. a – survival curves at a temperature of 24 °C. mle[9] – homozygous females, mle[9]/CyO and mle[9]/+ – heterozygous females with curved and straight wings, respectively, +/+ – females of the Oregon R line; b – average life expectancy. The error bars indicate the standard error of the mean, * – p < 0.001.

Download (171KB)
6. Fig. 5. The mle mutation[9] in the homozygous state reduces the fertility of females. a is the dynamics of female fertility during the first three weeks of life. mle[9] – homozygous females, mle[9]/CyO – heterozygous females, +/+ – females of the Oregon R line. The error bars indicate the standard error of the average; b – the average number of offspring for the first 22 days of life, * – p < 0.001.

Download (176KB)
7. 6. The mle mutation[9] affects the formation of scutellar macrochetes (asc). a – doubling of the anterior scutellar macrochete on one (left) or both (right) sides of the breast in homozygous females. The white arrow indicates the normal location of macrochetes, the black arrows indicate the mutant phenotype; b – the frequency of occurrence of the mutant phenotype in homo– (mle[9]) and heterozygous (mle[9]/CyO) females; 4*asc - females with a doubling of macrochetes on both sides, * p < 0.001.

Download (188KB)

Copyright (c) 2024 Russian Academy of Sciences