Drosophila melanogaster MLE Helicase functions beyond dosage compensation: molecular nature and pleiotropic effect of mle[9]
- Authors: Ashniev G.A.1, Georgieva S.G.1, Nikolenko J.V.1
-
Affiliations:
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
- Issue: Vol 60, No 4 (2024)
- Pages: 34-46
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://kld-journal.fedlab.ru/0016-6758/article/view/666942
- DOI: https://doi.org/10.31857/S0016675824040034
- EDN: https://elibrary.ru/cripiz
- ID: 666942
Cite item
Abstract
MLE of D. melanogaster is a conserved protein in higher eukaryotes, an ortholog of human DHX9 helicase. In mammals, this helicase has been shown to participate in different stages of gene expression. In D. melanogaster, the role of MLE as one of the components of the species-specific Dosage Compensation Complex has been extensively studied. However, the role of MLE in other processes has remained poorly understood. In this work, for the first time, the mle[9] mutation is mapped at the molecular level and shown to be caused by a deletion resulting in the loss of a highly conserved motif III in the catalytic core of the molecule. Thus, mle[9] specifically disrupts the helicase activity of the protein without affecting the function of other domains. The study of phenotypic manifestations of the mutation in females showed that in the homozygous state it has a pleiotropic effect. Without affecting survival, it significantly reduces fertility and lifespan. In addition, the duplication of scutellar macrochaetae was observed with high frequency. These results confirm that in D. melanogaster MLE helicase is involved in a wide range of gene expression regulation processes distinct from its role in dosage compensation.
Keywords
Full Text

About the authors
G. A. Ashniev
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: julia.v.nikolenko@gmail.com
Russian Federation, Moscow, 119991
S. G. Georgieva
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Email: julia.v.nikolenko@gmail.com
Russian Federation, Moscow, 119991
J. V. Nikolenko
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences
Author for correspondence.
Email: julia.v.nikolenko@gmail.com
Russian Federation, Moscow, 119991
References
- Singleton M.R., Dillingham M.S., Wigley D.B. Structure and mechanism of helicases and nucleic acid translocases // Annu. Rev. Biochem. 2007. V. 76. № 1. P. 23–50. https://doi.org/10.1146/annurev.biochem.76.052305.115300
- Fairman-Williams M.E., Guenther U.-P., Jankowsky E. SF1 and SF2 helicases: family matters // Curr. Opin. Struct. Biol. 2010. V. 20. № 3. P. 313–324. https://doi.org/10.1016/j.sbi.2010.03.011
- Lee C.G., Hurwitz J. Human RNA helicase A is homologous to the maleless protein of Drosophila // J. Biolo. Chem. 1993. V. 268. № 22. P. 16822–16830. https://doi.org/10.1016/S0021-9258(19)85490-X
- Wei W., Twell D., Lindsey K. A novel nucleic acid helicase gene identified by promoter trapping in Arabidopsis // The Plant J. 1997. V. 11. № 6. P. 1307–1314. https://doi.org/10.1046/j.1365-313X.1997.11061307.x
- Zhang S., Maacke H., Grosse F. Molecular cloning of the gene encoding nuclear DNA helicase II. A bovine homologue of human RNA helicase A and Drosophila Mle protein // J. Biol. Chem. 1995. V. 270. № 27. P. 16422–16427. https://doi.org/10.1074/JBC.270.27.16422
- Lee T., Pelletier J. The biology of DHX9 and its potential as a therapeutic target // Oncotarget. 2106. V. 7. № 27. P. 42716–42739. https://doi.org/10.18632/oncotarget.8446
- Николенко Ю.В., Георгиева С.Г., Копытова Д.В. Разнообразие функций хеликазы MLE в регуляции экспрессии генов у высших эукариот // Мол. биология. 2023. T. 57. № 1. С. 10-23. https://doi.org/10.31857/S0026898423010123
- Prabu J.R., Müller M., Thomae A.W. et al. Structure of the RNA helicase MLE reveals the molecular mechanisms for uridine specificity and RNA-ATP coupling // Mol. Cell. 2015. V. 60. № 3. P. 487–499. https://doi.org/10.1016/j.molcel.2015.10.011
- Aratani S., Kageyama Y., Nakamura A. et al. MLE activates transcription via the minimal transactivation domain in Drosophila // Int. J. Mol. Med. 2008. V. 21. № 4. P. 469–476. https://doi.org/10.3892/ijmm.21.4.469
- Izzo A., Regnard C., Morales V. et al. Structure-function analysis of the RNA helicase maleless // Nucl. Acids Res. 2008. V. 36. № 3. P. 950–962. https://doi.org/10.1093/nar/gkm1108
- Kuroda M.I., Kernan M.J., Kreber R. et al. The maleless protein associates with the X chromosome to regulate dosage compensation in drosophila // Cell. 1991. V. 66. № 5. P. 935–947. https://doi.org/10.1016/0092-8674(91)90439-6
- Lee C.-G. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation // EMBO J. 1997. V. 16. № 10. P. 2671–2681. https://doi.org/10.1093/emboj/16.10.2671
- Kuroda M.I., Hilfiker A., Lucchesi J.C. Dosage compensation in Drosophila – a model for the coordinate regulation of transcription // Genetics. 2016. V. 204. № 2. https://doi.org/10.1534/genetics.115.185108
- Samata M., Akhtar A. Dosage compensation of the X chromosome: A complex epigenetic assignment involving chromatin regulators and long noncoding RNAs // Annu. Rev. Biochem. 2018. V. 87. https://doi.org/ 10.1146/annurev-biochem-062917-011816
- Cugusi S., Kallappagoudar S., Ling H., Lucchesi J.C. The Drosophila helicase Maleless (MLE) is implicated in functions distinct from its role in dosage compensation // Mol. Cell. Proteomics. 2015. V. 14. № 6. P. 1478–1488. https://doi.org/10.1074/mcp.M114.040667
- Николенко Ю.В., Куршакова М.М., Краснов А.Н. Мультифункциональный белок ENY2 взаимодействует с РНК-хеликазой MLE // ДАН. 2019. Т. 489. С. 637–640. https://doi.org/10.31857/S0869-56524896637-640
- Николенко Ю.В., Куршакова М.М., Краснов А.Н., Георгиева С.Г. Хеликаза MLE – новый участник регуляции транскрипции гена ftz-f1, кодирующего ядерный рецептор у высших эукариот // ДАН. Науки о жизни. 2021. Т. 496. С. 48–51. https://doi.org/10.31857/S2686738921010182
- Kernan M.J., Kuroda M.I., Kreber R. et al. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle a regulator of X chromosome transcription // Cell. 1991. V. 66. № 5. P. 949–959. https://doi.org/10.1016/0092-8674(91)90440-A
- Николенко Ю.В., Краснов А.Н., Воробьева Н.Е. Ремоделирующий хроматин комплекс SWI/SNF влияет на пространственную организацию локуса гена ftz-f1 // Генетика. 2019. Т. 55. С. 156–164. https://doi.org/10.1134/S0016675819020115
- Николенко Ю.В., Краснов А.Н., Мазина М.Ю. и др. Изучение свойств нового экдизонзависимого энхансера // ДАН. 2017. Т. 474. С. 756–759. https://doi.org/10.7868/S0869565217180219
- Vorobyeva N.E., Nikolenko J.V., Nabirochkina E.N. et al. SAYP and Brahma are important for “repressive” and “transient” Pol II pausing // Nucl. Acids Res. 2012. V. 40. № 15. P. 7319–7331. https://doi.org/10.1093/nar/gks472
- Фурсова Н.А., Николенко Ю.В., Сошникова Н.В. и др. Белок CG9890 с доменами цинковых пальцев - новый компонент ENY2-содержащих комплексов дрозофилы // Acta Naturae. 2018. Т. 10. С. 110–114. https://doi.org/10.32607/20758251-2018-10-4-110-114
- Николенко Ю.В., Вдовинa Ю.А., Фефеловa Е.И. и др. Деубиквитинирующий (DUB) модуль SAGA участвует в Pol III-зависимой транскрипции // Мол. биология. 2021. Т. 55. С. 1–10. https://doi.org/10.31857/S0026898421030137
- Kopytova D.V., Krasnov A.N., Orlova A.V. et al. ENY2: couple, triple...more? // Cell Cycle. 2010. V. 9. № 3. P. 479–481. https://doi.org/10.4161/cc.9.3.10610
- Gurskiy D., Orlova A., Vorobyeva N.et al. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila // Nucl. Acids Res. 2012. V. 40. № 21. P. 10689–10700. https://doi.org/10.1093/nar/gks857
- Popova V.V., Orlova A.V., Kurshakova M.M. et al. The role of SAGA coactivator complex in snRNA transcription // Cell Cycle. 2018. V. 17. № 15. P. 1859–1870. https://doi.org/10.1080/15384101.2018.1489175
- Kopytova D.V., Orlova A.V., Krasnov A.N. et al. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA // Genes Dev. 2010. V. 24. № 1. P. 86–96. https://doi.org/10.1101/gad.550010
- Morra R., Smith E.R., Yokoyama R., Lucchesi J.C. The MLE subunit of the Drosophila MSL complex uses its ATPase activity for dosage compensation and its helicase activity for targeting // Mol. Cell. Biol. 2008. V. 28. № 3. P. 958–966. https://doi.org/10.1128/MCB.00995-07
- Pause A., Sonenberg N. Mutational analysis of a DEAD box RNA helicase: The mammalian translation initiation factor eIF-4A // EMBO J. 1992. V. 11. № 7. P. 2643–2654. https://doi.org/10.1002/J.1460-2075.1992.TB05330.X
- Figueiredo M.L.A., Kim M., Philip P. et al. Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions // PLoS Genet. 2014. V. 10. № 12. https://doi.org/10.1371/JOURNAL.PGEN.1004865
- Fergestad T., Ganetzky B., Palladino M.J. Neuropathology in Drosophila membrane excitability mutants // Genetics. 2006. V. 172. № 2. P. 1031–1042. https://doi.org/10.1534/GENETICS.105.050625
- Reenan R.A., Hanrahan C.J., Ganetzky B. The mlenapts RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing // Neuron. 2000. V. 25. № 1. P. 139–149. https://doi.org/10.1016/S0896-6273(00)80878-8
- Hanrahan C.J., Palladino M.J., Ganetzky B., Reenan R.A. RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation // Genetics. 2000. V. 155. № 3. P. 1149–1160. https://doi.org/10.1093/genetics/155.3.1149
- Lee T., Di Paola D., Malina A. et al. Suppression of the DHX9 helicase induces premature senescence in human diploid fibroblasts in a p53-dependent manner // J. Biol. Chem. 2014. V. 289. № 33. P. 22798–22814. https://doi.org/10.1074/JBC.M114.56853535
- Pazos Obregón F., Palazzo M., Soto P. et al. An improved catalogue of putative synaptic genes defined exclusively by temporal transcription profiles through an ensemble machine learning approach // BMC Genomics. 2019. V. 20. № 1. P. 1011. https://doi.org/10.1186/s12864-019-6380-z
- Lin S., Huang Y., Lee T. Nuclear receptor unfulfilled regulates axonal guidance and cell identity of Drosophila mushroom body neurons // PLoS One. 2009. V. 4. № 12. https://doi.org/10.1371/journal.pone.0008392
- Iyer E.P., Iyer S.C., Sullivan L. et al. Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning // PLoS One. 2013. V. 8. № 8. https://doi.org/10.1371/journal.pone.0072434
- Boulanger A., Clouet-Redt C., Farge M. et al. ftz-f1 and Hr39 opposing roles on EcR expression during Drosophila mushroom body neuron remodeling // Nat. Neurosci. 2011. V. 14. № 1. P. 3–44. https://doi.org/10.1038/nn.2700
- Calame D. G., Guo T., Wang C. et al. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot–Marie–Tooth disease // Am. J. Hum. Genet. 2023. V. 110. № 8. P. 1394–1413. https://doi.org/10.1016/j.ajhg.2023.06.013
- Castelli L. M., Benson B. C., Huang W.-P. et al. RNA helicases in microsatellite repeat expansion disorders and neurodegeneration // Front. Genet. 2022. V. 13 https://doi.org/10.3389/fgene.2022.886563
- Walstrom K.M., Schmidt D., Bean C.J., Kelly W.G. RNA helicase A is important for germline transcriptional control, proliferation, and meiosis in C. elegans // Mech. Dev. 2005. V. 122. № 5. P. 707–720. https://doi.org/10.1016/J.MOD.2004.12.002
- Campuzano S., Modolell J. Patterning of the Drosophila nervous system: The achaete–scute gene complex // Trends in Genetics. 1992. V. 8. № 6. P. 202–208. https://doi.org/10.1016/0168-9525(92)90234-U
- Cubas P., De Celis J.F., Campuzano S., Modolell J. Proneural clusters of achaete–scute expression and the generation of sensory organs in the Drosophila imaginal wing disc // Genes Dev. 1991. V. 5. № 6. P. 996–1008. https://doi.org/10.1101/GAD.5.6.996
- Villares R., Cabrera C.V. The achaete–scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc // Cell. 1987. V. 50. № 3. P. 415–424. https://doi.org/10.1016/0092-8674(87)90495-8
- Cabrera C.V., Alonso M.C. Transcriptional activation by heterodimers of the achaete–scute and daughterless gene products of Drosophila // EMBO J. 1991. V. 10. № 10. P. 2965–2974. https://doi.org/10.1002/J.1460-2075.1991.TB07847.X
- Usui K., Goldstone C., Gibert J.-M., Simpson P. Redundant mechanisms mediate bristle patterning on the Drosophila thorax. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 51. P. 20112–20117. https://doi.org/10.1073/pnas.0804282105
Supplementary files
