Molecular genetic аnd meiotic peculiarities оf Caucasus pine vole Microtus (Terricola) daghestanicus in the eastern part of the Greater Caucasus

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The high level of karyotypic and molecular genetic variability was previously detected in the Caucasus pine vole Microtus daghestanicus. However, populations of this species were poorly studied in the eastern part of the Greater Caucasus. To reveal their genetic peculiarities and phylogenetic relationships with other conspecific populations we analyzed a sample of Caucasus pine voles from the south of the Chechen Republic (Daikhokh Mount). The immunocytochemical study of synaptonemal complexes in meiotic prophase I demonstrated that the population belongs to the most distributed 54-chromosomal form of M. daghestanicus. The entire mitochondrial cytochrome b gene analysis showed close clustering specimens from Chechen Republic and previously studied Caucasus pine vole from northern Georgia. It indicates that all these specimens belong to a discrete genetic form. In the studied sample from Chechen Republic we revealed variability of the nuclear BRCA1 and XIST genes that probably reflects a complicated history of the population associated with alternation of its isolation from neighbor populations and restoring contacts between them.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Bogdanov

Koltzov Institute of Developmental Biology, Russian Academy of Sciences

Email: sergey8585@mail.ru
Ресей, Moscow, 119334

M. Atsaeva

Ibragimov Complex Institute of the Russian Academy of Sciences; Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: sergey8585@mail.ru
Ресей, Grozny, 344051; Moscow, 119991

D. Arsanukaev

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: sergey8585@mail.ru
Ресей, Moscow, 119071

S. Matveevsky

Vavilov Institute of General Genetics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sergey8585@mail.ru
Ресей, Moscow, 119991

Әдебиет тізімі

  1. Tambovtseva V., Bakloushinskaya I., Matveevsky S., Bogdanov A. Geographic mosaic of extensive genetic variations in subterranean mole voles Ellobius alaicus as a consequence of habitat fragmentation and hybridization // Life. 2022. V. 12. https://doi.org/10.3390/life12050728
  2. Bogdanov A., Tambovtseva V., Matveevsky S., Bakloushinskaya I. Speciation on the roof of the World: parallel fast evolution of cryptic mole vole species in the Pamir-Alay–Tien Shan region // Life. 2023. V. 13. https://doi.org/10.3390/life13081751
  3. Ляпунова Е.А., Ахвердян М.Р., Воронцов Н.Н. Робертсоновский веер изменчивости хромосом у субальпийских полевок Кавказа (Pitymys: Microtinae, Rodentia) // ДАН СССР. 1988. Т. 298. С. 480–484.
  4. Ахвердян М.Р., Ляпунова Е.А., Воронцов Н.Н. Кариология и систематика кустарниковых полевок Кавказа и Закавказья (Terricola, Arvicolinae, Rodentia) // Зоол. журнал. 1992. Т. 71. Вып. 3. С. 96–110.
  5. Хатухов А.М., Дзуев Р.И., Темботов А.К. Новые кариотипические формы кустарниковых полевок (Pitymys) Кавказа // Зоол. журнал. 1978. Т. 57. Вып. 10. С. 1566–1570.
  6. Загороднюк И.В. Кариотип, систематическое положение и таксономический статус Pitymys ukrainicus (Rodentia) // Вестник зоологии. 1988. № 4. С. 50–55.
  7. Bogdanov A.S., Khlyap L.A., Kefelioğlu H. et al. High molecular variability in three pine vole species of the subgenus Terricola (Microtus, Arvicolinae) and plausible source of polymorphism // J. Zool. Syst. Evol. Res. 2021. V. 59. I. 8. P. 2519–2538. https://doi.org/10.1111/jzs.12539
  8. Богданов А.С., Хляп Л.А., Баскевич М.И. Дифференциация и филогенетические связи трех видов полевок подрода Terricola (Rodentia, Arvicolinae, Microtus): результаты анализа фрагментов ядерных генов BRCA1 и XIST // Известия РАН. Серия биол. 2020. № 6. С. 575–580. https://doi.org/10.31857/S0002332920060028
  9. Jaarola M., Martínková N., Gűndűz İ. et al. Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences // Mol. Phylogen. and Evol. 2004. V. 33. P. 647–663. https://doi.org/10.1016/j.ympev.2004.07.015
  10. Малыгин В.М., Левенкова Е.С., Ахвердян М.Р., Сафронова Л.Д. Сравнение синаптонемных комплексов самцов-гибридов кавказских кустарниковых полевок (Rodentia, Microtinae, Terricola) в контексте изучения гибридной стерильности // Зоол. журнал. 2000. Т. 79. Вып. 3. С. 348–356.
  11. Богданов Ю.Ф., Коломиец О.Л. Синаптонемный комплекс – индикатор динамики мейоза и изменчивости хромосом. М.: Т-во научн. изданий КМК, 2007. 358 c.
  12. Peters A.H.F.M., Plug A.W., van Vugt M.J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germ line // Chromosome Res. 1997. V. 5. P. 66–71. https://doi.org/10.1023/A:1018445520117
  13. Page J., Berríos S., Rufas J.S. et al. The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements // J. Cell Sci. 2003. V. 116. P. 551–560. https://doi.org/10.1242/jcs.00252
  14. Matveevsky S., Chassovnikarova T., Grishaeva T. et al. Kinase CDK2 in mammalian meiotic prophase I: Screening for hetero- and homomorphic sex chromosomes // Int. J. Mol. Sci. 2021. V. 22. https://doi.org/10.3390/ijms22041969
  15. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: A laboratory manual. N. Y.: Cold Spring Harbor Lab. Press, 1989. 398 p.
  16. Minh B.Q., Trifinopoulos J., Schrempf D., Schmidt H.A. IQ-TREE version 2.0: Tutorials and manual phylogenomic software by maximum likelihood. 2019, december 1. http://www.iqtree.org
  17. Богданов Ю.Ф., Коломиец О.Л. Кариотипирование на основе синаптонемных комплексов и применение этого метода в цитогенетике // Генетика. 1985. Т. 21. № 5. С. 793–802.
  18. Borodin P.M., Basheva E.A., Torgasheva A.A. et al. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles // Chrom. Res. 2012. V. 20. P. 259–268. https://doi.org/10.1007/s10577-011-9261-0
  19. Earnshaw W.C., Allshire R.C., Black B.E. et al. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant // Chrom. Res. 2013. V. 21. P. 101–106. https://doi.org/10.1007/s10577-013-9347-y

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. The sprawled nucleus of the spermatocyte of the Dagestan vole M. daghestanicus (No. T23-01), the pachytene stage. Immunodetection of the protein of the lateral elements of SC – SYCP3 (a), kinetochore protein (centromeres) was performed using CREST antibodies (b). Chromatin was stained with DAPI (c). The combined image of the SYCP3 and centromere proteins is presented separately (d). Some areas of chromatin between the SC are CREST-positive (marked with arrows). The scale is 5 microns.

Жүктеу (334KB)
3. Fig. 2. ML-dendrograms constructed when comparing Dagestan voles from different populations and several individuals of M. subterraneus and M. majori according to the complete sequence of the cytb mitochondrial gene (a), the combined sequence of two non-overlapping fragments of the XIST nuclear gene (b) and a fragment of the 11th exon of the BRCA1 nuclear gene (c). In the nodes tree branches are given bootstrap index values exceeding 70%. For previously published sequences, GenBank database numbers are indicated; numbers without additional designations are taken from the publication [7], numbers marked with an asterisk are from the article [9]. For the XIST gene, the numbers corresponding to its first and second separately sequenced fragments are separated by commas.

Жүктеу (1MB)

© Russian Academy of Sciences, 2024