Analysis of the Structure of the Mitochondrial Gene Pool of Russian Old-Settlers of the Arctic Coast of Yakutia from Village Russkoye Usty’e

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this study analysis of the mitochondrial gene pool of residents of the village Russkoye Usty’e was carried out. It was revealed that the spectrum of mitochondrial lines of the Russian old-settlers is represented by 8 haplogroups and is characterized by the dominance of East-Eurasian lineages C, D, G, F and M13, which amounted to 66.7%. The West-Eurasian lineages HV, H and U (33.3%) were minor, which predominated the rare sub-haplogroup H2a. It was revealed that among Russian old-settlers, the H2 lineages occurs with one of the highest frequencies in the world (16.7%), forming a specific cluster, distant from the other European H2a-lineages, probably formed as a result of a founder effect. The preservation of specific maternal lineages in the gene pool of the Russian old-settlers may be one of the convincing evidence in favor of the existence of an earlier by sea wave of settlement of the Arctic coast of Yakutia by Pomorians in XVI c., before the arrival of the Cossacks in XVII c.

全文:

受限制的访问

作者简介

T. Borisova

Ammosov North-Eastern Federal University

Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677013

A. Solovyev

Ammosov North-Eastern Federal University

Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677013

G. Romanov

Ammosov North-Eastern Federal University

Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677013

F. Teryutin

Yakut Scientific Center of Complex Medical Problems

Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677000

V. Pshennikova

Yakut Scientific Center of Complex Medical Problems

Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677000

N. Barashkov

Yakut Scientific Center of Complex Medical Problems

Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677000

S. Fedorova

Ammosov North-Eastern Federal University

编辑信件的主要联系方式.
Email: sardaanafedorova@mail.ru
俄罗斯联邦, Yakutsk, 677013

参考

  1. Алексее А. Н. Первые русские поселения XVII–XVIII вв. на северо-востоке Якутии. Новосибирск: Изд-во Института археологии и этнографии СО РАН, 1996. 151 с.
  2. Никитина С. Е. Русские арктические старожилы Республики Саха (Якутия): проблемы сохранения уникальной культуры // Русские арктические старожилы Якутии: Сб. науч. статей. Якутск: ИГИиПМНС, 2019. С. 16–33.
  3. Васильев В. Л. К вопросу о связях севернорусских говоров с говором села Русское Устье на северо-востоке Якутии // Севернорусские говоры. № 16. С. 63–75. СПб.: Нестор-История, 2017.
  4. Чикачев А. Г. Русские на Индигирке: Историко-этнографический очерк. Новосибирск: Новосиб. отд. изд-ва «Наука», 1990. 189 с.
  5. Окладников А. П., Гоголев З. В., Ащепков Е. А. Древний Зашиверск. Древнерусский заполярный город. Москва: Наука, 1977. 212 с.
  6. Строгова Е. А. Формирование постоянного русского населения и образование этнической территории на севере Якутии в XVII–XVIII вв. // Русские арктические старожилы Якутии: Сб. науч. статей. Якутск: ИГИиПМНС, 2019. С. 7–15.
  7. Solovyev A. V., Borisova T. V., Cherdonova A. M. et al. The Russian old-settlers in the arctic coast of Eastern Siberia: Family name diversity in the context of their origin. // Sustainability. 2021. №13. P. 10895. https://doi.org/10.3390/su131910895/
  8. Борисова Т. В., Соловьев А. В., Чердонова А. М. и др. Анализ линий Y-хромосомы русских старожилов арктического побережья Якутии из села Русское Устье // Якутский мед. журн. 2022. № 3(79). С. 74–77. doi: 10.25789/YMJ.2022.79.19
  9. Соловьев А. В., Борисова Т. В., Романов Г. П. и др. Генетическая история русских старожилов арктического побережья Якутии из с. Русское Устье по данным Y-хромосомы и широкогеномного анализа // Генетика. 2023. Т. 59. № 9. С. 1070–1077. doi: 10.31857/S0016675823090114
  10. Ilumäe A. M., Reidla M., Chukhryaeva M. et al. Human Y Chromosome Haplogroup N: A non-trivial time-resolved phylogeography that cuts across language families // Am. J. Hum. Genet. 2016. V. 99. № 1. P. 163–173. doi: 10.1016/j.ajhg.2016.05.025
  11. Балановская Е. В., Агджоян А. Т., Схаляхо Р. А. и др. Генофонд новгородцев: между севером и югом // Генетика. 2017. Т. 53. № 11. С. 1338–1348. doi: 10.7868/S0016675817110029
  12. Сукерник Р. И., Володько Н. В., Мазунин И. О. и др. Генетическая история русских старожилов полярного севера Восточной Сибири по результатам анализа изменчивости мтДНК // Генетика. 2010. Т. 46. № 11. С. 1571–1579.
  13. https://rosstat.gov.ru/vpn_popul
  14. Ye J., Coulouris G., Zaretskaya I. et al. Primer-blast: А tool to design target-specific primers for polymerase chain reaction // BMC Bioinformatics. 2012. № 13. P. 134. doi: 10.1186/1471-2105-13-134
  15. Деренко M. B., Малярчук Б. A., Денисова Г. А. и др. Полиморфизм диаллельных локусов Y-хромосомы у коренного населения Алтае-Саянского нагорья // Генетика. 2002. Т. 38. № 3. С. 393–399.
  16. van Oven M., Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation // Hum. Mutat. 2009. V. 30. № 2. P. Е386–E394. doi: 10.1002/humu.20921
  17. Sneath P., Sokal R. Numerical taxonomy // Nature. 1962. № 193. P. 855–860. https://doi.org/10.1038/193855a0
  18. Tamura K., Stecher G., Kumar S. Mega11: Мolecular evolutionary genetics analysis version 11 // Mol. Biol. Evol. 2021. V. 38. № 7. P. 3022–3027. doi: 10.1093/molbev/msab120
  19. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method // Proc. Natl Acad. Sci. USA. 2004. V. 101. № 30. P. 11030–11035. doi: 10.1073/pnas.0404206101
  20. Behar D. M., van Oven M., Rosset S. et al. A «Copernican» reassessment of the human mitochondrial DNA tree from its root // Am. J. Hum. Genet. 2013. V. 90. № 4. P. 675–684. https://doi.org/10.1016/j.ajhg.2012.03.002
  21. Benson D. A., Cavanaugh M., Clark K. et al. GenBank // Nucleic acids research (Database issue). 2013. №41. D36–D42. https://doi.org/10.1093/nar/gks1195
  22. Ehler E., Novotný J., Juras A. et al. AmtDB: А database of ancient human mitochondrial genomes // Nucl. Acids Res. 2019. V. 47. № D1. P. D29–D32. doi: 10.1093/nar/gky843
  23. Parsons T. J., Muniec D. S., Sullivan K. et al. A high observed substitution rate in the human mitochondrial DNA control region // Nat. Genet. 1997. V. 15. № 4. P. 363–368. doi: 10.1038/ng0497-363
  24. Soodyall H., Jenkins T., Mukherjee A. et al. The founding mitochondrial DNA lineages of Tristan da Cunha Islanders // Am. J. Phys. Anthropol. 1997. V. 104. № 2. P. 157–166. doi: 10.1002/(SICI)1096-8644(199710)104:2<157::AID-AJPA2>3.0.CO;2-W
  25. Sigurğardóttir S., Helgason A., Gulcher J. R. et al. The mutation rate in the human mtDNA control region // Am. J. Hum. Genet. 2000. V. 66. № 5. P. 1599–1609. doi: 10.1086/302902
  26. Heyer E., Zietkiewicz E., Rochowski A. et al. Phylogenetic and familial estimates of mitochondrial substitution rates: Study of control region mutations in deep-rooting pedigrees // Am. J. Hum. Genet. 2001. V. 69. № 5. P. 1113–1126. doi: 10.1086/324024
  27. Howell N., Smejkal C.B., Mackey D.A. et al. The pedigree rate of sequence divergence in the human mitochondrial genome: Тhere is a difference between phylogenetic and pedigree rates // Am. J. Hum. Genet. 2003. V. 72. № 3. P. 659–670. doi: 10.1086/368264
  28. Santos C., Montiel R., Sierra B. et al. Understanding differences between phylogenetic and pedigree-derived mtDNA mutation rate: A model using families from the Azores Islands (Portugal) // Mol. Biol. Evol. 2005. V. 22. № 6. P. 1490–1505. doi: 10.1093/molbev/msi141
  29. Soares P., Ermini L., Thomson N. et al. Correcting for purifying selection: Аn improved human mitochondrial molecular clock // Am. J. Hum. Genet. 2009. V. 84. № 6. P. 740–759. doi: 10.1016/j.ajhg.2009.05.001
  30. Tajima F. Simple methods for testing the molecular evolutionary clock hypothesis // Genetics. 1993. V. 135. № 2. P. 599–607. doi: 10.1093/genetics/135.2.599
  31. Veeramah K. R., Rott A., Groß M. et al. Population genomic analysis of elongated skulls reveals extensive female-biased immigration in early medieval Bavaria // Proc. Natl Acad. Sci. USA. 2018. V. 115. № 13. P. 3494–3499. doi: 10.1073/pnas.1719880115
  32. Damgaard P. d. B., Marchi N., Rasmussen S. et al. 137 ancient human genomes from across the Eurasian steppes // Nature. 2018. № 557. P. 369–374. https://doi.org/10.1038/s41586-018-0094-2
  33. Mathieson I., Lazaridis I., Rohland N. et al. Genome-wide patterns of selection in 230 ancient Eurasians // Nature. 2015. № 528. P. 499–503. https://doi.org/10.1038/nature16152
  34. Olalde I., Brace S., Allentoft M. et al. The beaker phenomenon and the genomic transformation of northwest Europe // Nature. 2018. № 555. P. 190–196. https://doi.org/10.1038/nature25738
  35. Mathieson I., Alpaslan-Roodenberg S., Posth C. et al. The genomic history of southeastern Europe // Nature. 2018. № 555. P. 197–203. https://doi.org/10.1038/nature25778
  36. Knipper C., Mittnik A., Massy K. et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe // Proc. Natl Acad. Sci. USA. 2017. V. 114. № 38. P. 10083–10088. doi: 10.1073/pnas.1706355114
  37. Derbeneva O. A., Starikovskaya E. B., Wallace D. C., Sukernik R. I. Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis // Am. J. Hum. Genet. 2002. V. 70. № 4. P. 1009–1014. doi: 10.1086/339524
  38. Derenko M. V., Grzybowski T., Malyarchuk B. A. et al. Diversity of mitochondrial DNA lineages in South Siberia // Ann. Hum. Genet. 2003. V. 67. № 5. P. 391–411. doi: 10.1046/j.1469-1809.2003.00035.x
  39. Derenko M., Malyarchuk B., Grzybowski T. et al. Phylogeographic analysis of mitochondrial DNA in northern Asian populations // Am. J. Hum. Genet. 2007. V. 81. № 5. P. 1025–1041. doi: 10.1086/522933
  40. Yao Y. G., Kong Q. P., Wang C. Y. et al. Different matrilineal contributions to genetic structure of ethnic groups in the Silk Road region in China // Mol. Biol. Evol. 2004. V.21. №12. P. 2265–2280. doi: 10.1093/molbev/msh238
  41. Kong Q. P., Yao Y. G., Sun C. et al. Phylogeny of east Asian mitochondrial DNA lineages inferred from complete sequences // Am. J. Hum. Genet. 2003. V. 73. № 3. P. 671–676. doi: 10.1086/377718
  42. Pakendorf B., Wiebe V., Tarskaia L. A. et al. Mitochondrial DNA evidence for admixed origins of central Siberian populations // Am. J. Phys. Anthropol. 2003. V. 120. № 3. P. 211–224. doi: 10.1002/ajpa.10145
  43. Федорова С. А., Бермишева M. A., Виллемс Р. и др. Анализ линий митохондриальной ДНК в популяции якутов // Мол. биология. 2003. V. 37. P. 643–653.
  44. Fedorova S.A, Reidla M., Metspalu E. et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): Implications for the peopling of northeast Eurasia // BMC Evol. Biol. 2013. V. 13. P. 127. doi: 10.1186/1471-2148-13-127
  45. Cocoş R., Schipor S., Hervella M. et al. Genetic affinities among the historical provinces of Romania and central Europe as revealed by an mtDNA analysis // BMC Genet. 2017. V. 18. № 1. P. 20. doi: 10.1186/s12863-017-0487-5
  46. Yonova-Doing E., Calabrese C., Gomez-Duran A. et al. An atlas of mitochondrial DNA genotype-phenotype associations in the UK biobank // Nat. Genet. 2021. V. 53. № 7. P. 982–993. doi: 10.1038/s41588-021-00868-1
  47. Mujkić I., Ahmić A., Lasić L. et al. The mitochondrial landscape of the Konjuh and Majevica mountains of northeastern Bosnia: The view in the context genetic and demographic history // Genetics & Applications. 2020. V. 6. № 2. P. 18–30. https://doi.org/10.31383/ga.vol6iss2ga02
  48. Čoklo M., Auguštin D. H., Šarac J. et al. Diversity of Y-chromosomal and mtDNA markers included in mediscope chip within two Albanian subpopulations from Croatia and Kosovo: preliminary data // Coll. Antropol. 2016. V. 40. № 3. P. 195–198.
  49. Roostalu U. Towards the understanding of the origin of human genetic variation in Eurasia: mtDNA haplogroup H in the Caucasus: Research master’s degree. Univ. of Tartu, 2004.
  50. Brandstätter A., Zimmermann B., Wagner J. et al. Timing and deciphering mitochondrial DNA macro-haplogroup R0 variability in Central Europe and Middle East // BMC Evol. Biol. 2008. № 8. P. 191. https://doi.org/10.1186/1471-2148-8-191
  51. Kushniarevich A., Sivitskaya L., Danilenko N. et al. Uniparental genetic heritage of Belarusians: Encounter of rare middle eastern matrilineages with a central European mitochondrial DNA pool // PLoS One. 2013. V. 8. № 6. P. e66499. doi: 10.1371/journal.pone.0066499
  52. Sarac J., Sarić T., Auguštin D.H. et al. Maternal genetic heritage of southeastern Europe reveals a new Croatian isolate and a novel, local sub-branching in the X2 haplogroup // Ann. Hum. Genet. 2014. V. 78. № 3. P. 178–194. doi: 10.1111/ahg.12056
  53. Malyarchuk B., Skonieczna K., Duleba A. et al. Mitogenomic diversity in Czechs and Slovaks // Forensic Sci. Int. Genet. 2022. № 59. P. 102714. doi: 10.1016/j.fsigen.2022.102714
  54. Bybjerg-Grauholm J., Hagen C. M., Gonçalves V. F. et al. Complex spatio-temporal distribution and genomic ancestry of mitochondrial DNA haplogroups in 24.216 Danes // PLoS One. 2018. V. 13. № 12. P. e0208829. doi: 10.1371/journal.pone.0208829
  55. Stoljarova M., King J. L., Takahashi M. et al. Whole mitochondrial genome genetic diversity in an Estonian population sample // Int J. Legal Med. 2016. V. 130. №1. P. 67–71. doi: 10.1007/s00414-015-1249-4
  56. Loogväli E. L., Roostalu U., Malyarchuk B. A. et al. Disuniting uniformity: Apied cladistic canvas of mtDNA haplogroup H in Eurasia // Mol. Biol. Evol. 2004. V. 21. № 11. P. 2012–2021. doi: 10.1093/molbev/msh209
  57. Irwin J., Saunier J., Strouss K. et al. Mitochondrial control region sequences from northern Greece and Greek Cypriots // Int. J. Legal Med. 2008. V. 122. № 1. P. 87–89. doi: 10.1007/s00414-007-0173-7
  58. Malyarchuk B., Derenko M., Denisova G. et al. Whole mitochondrial genome diversity in two Hungarian populations // Mol. Genet. Genomics. 2018. V. 293. № 5. P. 1255–1263. doi: 10.1007/s00438-018-1458-x
  59. Roostalu U., Kutuev I., Loogväli E.L. et al. Origin and expansion of haplogroup H, the dominant human mitochondrial DNA lineage in West Eurasia: The Near Eastern and Caucasian perspective // Mol. Biol. Evol. 2007. V. 24. № 2. P. 436-448. doi: 10.1093/molbev/msl173
  60. Pliss L., Tambets K., Loogväli E.L. et al. Mitochondrial DNA portrait of Latvians: Towards the understanding of the genetic structure of Baltic-speaking populations // Ann. Hum. Genet. 2006. V. 70. № 4. P. 439–458 doi: 10.1111/j.1469-1809.2005.00238.x
  61. Kasperaviciūte D., Kucinskas V., Stoneking M. Y chromosome and mitochondrial DNA variation in Lithuanians // Ann. Hum. Genet. 2004. V. 68. № 5. P. 438–452. doi: 10.1046/j.1529-8817.2003.00119.x
  62. Mielnik-Sikorska M., Daca P., Malyarchuk B. et al. The history of Slavs inferred from complete mitochondrial genome sequences // PLoS One. 2013. V. 8. № 1. P. e54360. doi: 10.1371/journal.pone.0054360
  63. Marques S. L., Goios A., Rocha A.M. et al. Portuguese mitochondrial DNA genetic diversity-an update and a phylogenetic revision // Forensic Sci. Int. Genet. 2015. № 15. P. 27–32. doi: 10.1016/j.fsigen.2014.10.004
  64. Malyarchuk B., Litvinov A., Derenko M. et al. Mitogenomic diversity in Russians and Poles // Forensic Sci. Int. Genet. 2017. №30. P. 51–56. doi: 10.1016/j.fsigen.2017.06.003
  65. Davidovic S., Malyarchuk B., Grzybowski T. et al. Complete mitogenome data for the Serbian population: The contribution to high-quality forensic databases // Int. J. Legal Med. 2020. V. 134. № 5. P. 1581–1590. doi: 10.1007/s00414-020-02324-x
  66. Zupan A., Hauptman N., Glavač D. The maternal perspective for five Slovenian regions: The importance of regional sampling // Ann. Hum. Biol. 2016. V. 43. № 1. P. 57–66. doi: 10.3109/03014460.2015.1006678
  67. Hernández C. L., Dugoujon J. M., Novelletto A. et al. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean // BMC Genet. 2017. № 18. P. 46. https://doi.org/10.1186/s12863-017-0514-6
  68. Lappalainen T., Hannelius U., Salmela E. et al. Population structure in contemporary Sweden- a Y-chromosomal and mitochondrial DNA analysis // Ann. Hum. Genet. 2009. V. 73. № 1. P. 61–73. doi: 10.1111/j.1469-1809.2008.00487.x
  69. Derenko M. V., Malyarchuk B. A., Denisova G. A. et al. Molecular genetic differentiation of the ethnic populations of South and East Siberia based on mitochondrial DNA polymorphism // Rus. J. Genet. 2002. V. 38. P. 1196–1202. https://doi.org/10.1023/A:1020661022901
  70. Фишер И. Сибирская история с самого открытия Сибири до завоевания сей земли Российским оружием. СПб.: Имп. Акад. наук, 1774. 632 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Phylogenetic tree constructed by the UPGMA method using the polymorphism data of the mtDNA fragment 16028-181, including mtDNA HBSI and II (51 samples). One site of divergence between the samples was calculated using the relative evolutionary rate test based on the χ² criterion [30]. One site of divergence was found between the Russkoye Ustye samples (χ² = 4.5; p < 0.05). Ancient samples: Alh_2, Alh_3 are samples from the Altheim (Andreasweg) site in modern-day Bavaria in southern Germany, mostly dated to around 500 BC [31]. DA171 is an ancient sample from a site in modern-day Lithuania, dated to 1800–1500 BC (Iron Age); DA191, DA194 and DA197 are samples from sites in the territory of modern Hungary, dated to 2409, 2322 and 2378 BC respectively (Iron Age); DA51 are samples from archaeological excavations in the Tien Shan territory, dated to 2220 BC [32]. I0122 is an ancient sample from the archaeological burial ground of Khvalynsk II (Samara region, Russia), dated to 5200–4000 BC (Bronze Age) [33]. I2604 is an ancient sample from a burial near Barton Stacey (Hampshire, England), dated to 2210–2030 BC (Bronze Age); I2653, I2656 – ancient samples from a burial in East Lothian (Scotland), dated to 1500–1300 and 1279–980 BC (Bronze Age), respectively [34]. I6561 – ancient sample from a burial near Alexandria (Ukraine), dated to 4045–3974 BC (Neolithic) [35]. POST_1 (Haunstetten – Postillionstraße), UNTA58-62_147, UNTA85-1336 (Haunstetten – Unterer Talweg) – ancient samples from a burial in the Lech River valley, south of Augsburg (Bavaria, Germany), dated to 2024–1882, 2031–1900 and 2465–2300 BC. BC respectively (Bronze Age) [36]. Modern examples: DNK – from Denmark, ESP – from Spain, FIN – from Finland, FRA – from France, GBR – from Great Britain, ITA – from Italy, POL – from Poland, RUS – from Russia, SRB – from Serbia, TUR – from Turkey.

下载 (1MB)
3. Fig. 2. Geographic distribution of haplogroup H2 in Eurasia [47–69].

下载 (255KB)
4. Fig. 3. Relationship of the origin of mitochondrial haplogroups of Russkoye Ustye residents with the main waves of settlement of the village. Russkoye Ustye according to the genealogy of maternal clans. Pomors: sub-haplogroups H2a and U2e may be associated with people from Pomorye. Siberian component: C, C4a1a1, C4a2a1, C5a2, D, D4i, F1b, G1b1 and M13a1b. Late migrations: according to the genealogy of maternal clans from West Eurasian lines, only sub-haplogroup U4a2b was definitely associated with late migrations (the USSR period), it is possible that the HV and U4a1 lines may also be associated with late migrations. Zashiversk: sub-haplogroups HV, U2e and U4a1 could have been brought to the Arctic coast of Yakutia both together with the Russian-speaking population of the abolished town of Zashiversk and in subsequent historical periods. Sub-haplogroup HV may be associated not only with the Russian-speaking population, but also with the local autochthonous component, since it was previously discovered in populations of Eastern Siberia [43, 44, 69].

下载 (156KB)

版权所有 © Russian Academy of Sciences, 2024