Expression of miR-29a, miR-30c AND miR-150 microRNAs in the Long-Term Period after Chronic Radiation Exposure
- Autores: Yanishevskaya M.A.1, Blinova E.A.1,2, Akleyev A.V.1,2
-
Afiliações:
- Ural Research Center for Radiation Medicine, FMBA of Russia
- Chelyabinsk State University
- Edição: Volume 60, Nº 11 (2024)
- Páginas: 97-106
- Seção: ГЕНЕТИКА ЧЕЛОВЕКА
- URL: https://kld-journal.fedlab.ru/0016-6758/article/view/667169
- DOI: https://doi.org/10.31857/S0016675824110085
- EDN: https://elibrary.ru/wbdblq
- ID: 667169
Citar
Resumo
Every year, more and more data demonstrate that microRNA expression levels were significantly altered after acute radiation exposure, and microRNAs themselves play an important role in the cellular response to ionizing radiation. However, regulation of microRNA expression after chronic radiation exposure within the low and middle dose range is poorly understood. In the present study, the expression of mature miR-29a, miR-30c, and miR-150 microRNAs in whole blood from 81 individuals in the long-term period after chronic low dose-rate radiation exposure was analyzed by real-time PCR method. The mean age of the studies people was 72 years, and the accumulated radiation doses to red bone marrow (RBM), thymus and peripheral lymphoid organs ranged from 2.13 to 1867.55 mGy and 0.18 to 488.79 mGy, respectively. More than 70 years after the onset of radiation exposure, a statistically significant dose-dependent decrease in miR-30c microRNA expression was found in exposed individuals in RBM, thymus and peripheral lymphoid organs.
Palavras-chave
Texto integral

Sobre autores
M. Yanishevskaya
Ural Research Center for Radiation Medicine, FMBA of Russia
Autor responsável pela correspondência
Email: yanishevskaya@urcrm.ru
Rússia, Chelyabinsk, 454141
E. Blinova
Ural Research Center for Radiation Medicine, FMBA of Russia; Chelyabinsk State University
Email: yanishevskaya@urcrm.ru
Rússia, Chelyabinsk, 454141; Chelyabinsk, 454001
A. Akleyev
Ural Research Center for Radiation Medicine, FMBA of Russia; Chelyabinsk State University
Email: yanishevskaya@urcrm.ru
Rússia, Chelyabinsk, 454141; Chelyabinsk, 454001
Bibliografia
- Liang L. H., He X. H. Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy // Acta Pharmacol. Sin. 2011. V. 32. № 11. P. 1311–1320. doi: 10.1038/aps.2011.103
- Chaudhry M. A., Omaruddin R. A., Kreger B. et al. MicroRNA responses to chronic or acute exposures to low dose ionizing radiation// Mol. Biol. Rep. 2012. V. 39. № 7. P. 7549–7558. doi: 10.1007/s11033-012-1589-9
- Metheetrairut C., Slack F. J. MicroRNAs in the ionizing radiation response and in radiotherapy// Curr. Opin. Genet. Dev. 2013. V. 23. № 1. P. 12–19. doi: 10.1016/j.gde.2013.01.002
- Weidhaas J. B., Babar I., Nallur S. M. et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy// Cancer Res. 2007. V. 67. № 23. P. 11111–11116. doi: 10.1158/0008-5472.CAN-07-2858
- Kato M., Paranjape T., Müller R. U. et al. The mir-34 microRNA is required for the DNA damage responsein vivoin C. elegans and in vitro in human breast cancer cells// Oncogene. 2009. V. 28. № 25. P. 2419–2424. doi: 10.1038/onc.2009.106
- Ilnytskyy Y., Koturbash I., Kovalchuk O. Radiation-induced bystander effects in vivo are epigenetically regulated in a tissue-specific manner// Environ. Mol. Mutagen. 2009. V. 50. P. 105–113. https://doi.org/10.1002/em.20440
- Port M., Herodin F., Valente M., et al. MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons // PLoS One. 2016. V. 11. № 11. doi: 10.1371/journal.pone.0165307
- Chiba M., Monzen S., Iwaya C. et al. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation// Scientific Reports. 2018. V. 8. № 1. P. 1302. doi: 10.1038/s41598-018-19763-7
- Gandellini P., Rancati T., Valdagni R., Zaffaroni N. МiRNAs in tumor radiation response: bystanders or participants? // Trends Mol. Med. 2014. V. 20. № 9. P. 529–539. doi: 10.1016/j.molmed.2014.07.004
- Блинова Е. А., Котикова А. И., Янишевская М. А., Аклеев А. В. Апоптоз лимфоцитов и полиморфизм генов регуляции апоптоза у лиц, подвергшихся хроническому радиационному воздействию// Мед. радиология и радиационная безопасность. 2020. Т. 65. № 4. С. 36–42. doi: 10.12737/1024-6177-2020-65-4-36-42
- Никифоров В. С., Блинова Е. А., Котикова А. И., Аклеев А. В. Транскрипционная активность генов репарации, апоптоза и клеточного цикла (TP53, MDM2, ATM, BAX, BCL-2, CDKN1A, OGG1, XPC, PADI4, MAPK8, NF-KB1, STAT3, GATA3) у хронически облученных людей с различной интенсивностью апоптоза лимфоцитов периферической крови // Вавил. Жур. генетики и селекции. 2022. Т. 26. № 1. С. 50–58. doi: 10.18699/VJGB-22-08. – EDN KBBUEC
- Burgio E., Piscitelli P., Migliore L. Ionizing radiation and human health: Reviewing models of exposure and mechanisms of cellular damage. An Epigenetic perspective // Int. J. Environ Res. Public Health. 2018. V. 15. № 9. P. 1971. doi: 10.3390/ijerph15091971
- Янишевская М. А., Блинова Е. А., Аклеев А. В. Влияние хронического радиационного воздействия на экспрессию микроРНК человека // Генетика. 2023. Т. 59. № 10. С. 1171–1178.
- Силкин C. C., Крестинина Л. Ю., Старцев В. Н. и др. Уральская когорта аварийно-облученного населения // Медицина экстремальных ситуаций. 2019. Т. 21. № 3. С. 393–402.
- Degteva M. O., Napier B. A., Tolstykh E. I. et al. Enhancements in the Techa river dosimetry system: TRDS-2016D code for reconstruction of deterministic estimates of dose from environmental exposures // Health Physics. 2019. V. 117. № 4. P. 378–387. doi: https://doi.org/10.1097/HP.0000000000001067
- СанПиН 2.6.1.2523-09. Нормы радиационной безопасности (НРБ-99/2009). М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. –100 с. https://docs.cntd.ru/document/902170553 (дата обращения: 17.10.2023).
- Noren Hooten N., Fitzpatrick M., Wood W. H. et al. Age-related changes in microRNA levels in serum // Aging (Albany NY). 2013. V. 5. № 10. P. 725–740. doi: 10.18632/aging.100603
- Noren Hooten N., Abdelmohsen K., Gorospe M. et al. МicroRNA expression patterns reveal differential expression of target genes with age // PLoS One. 2010. V. 5. № 5. doi: 10.1371/journal.pone.0010724
- Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2(Delta Delta C(T)) Method//Methods. 2001. V. 25. № 4. P. 402–408. doi: 10.1006/meth.2001.1262
- Chaudhry M. A., Omaruddin R. A., Kreger B. et al. MicroRNA responses to chronic or acute exposures to low dose ionizing radiation // Mol. Biol. Rep. 2012. V. 39. № 7. P. 7549–7558. doi: 10.1007/s11033-012-1589-9
- Lee I., Ajay S. S., Jong I. Y. et al. New class of microRNA targets containing simultaneous 5′-UTR- and 3′-UTR-interaction sites // Genome Research. 2009. V. 19. № 7. P. 1175–1183. doi: 10.1101/gr.089367.108
- Brummer A., Hausser J. MicroRNA binding sites in the coding region of mRNAs: Еxtending the repertoire of post-transcriptional gene regulation // BioEssays. 2014. V. 36. № 6. P. 617–626. doi: 10.1002/bies.201300104
- Valinezhad Orang A., Safaralizadeh R., Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated gene regulation from common downregulation to mRNA-secific upregulation // Int. J. Genomics. 2014. V. 2014. doi: doi: 10.1155/2014/970607
- Dinh T.-K. T., Fendler W., Chałubińska-Fendler J. et al. Circulating miR-29a and miR-150 correlate with delivered dose during thoracic radiation therapy for non-small cell lung cancer // Rad. Oncology. 2016. V. 11. P. 61. doi: 10.1186/s13014-016-0636-4
- Li X. H., Ha C. T., Fu D., Xiao M. Micro-RNA30c negatively regulates REDD1 expression in human hematopoietic and osteoblast cells after gamma-irradiation // PLoS One. 2012. V. 7. № 11. doi: 10.1371/journal.pone.0048700
- Acharya S. S., Fendler W., Watson J. et al. Serum microRNAs are early indicators of survival after radiation-induced hematopoietic injury // Sci. Transl.Med. 2015. V. 7. № 287. doi: 10.1126/scitranslmed.aaa6593
- Li X. H., Ha C. T., Fu D. Delta-tocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34+ cells from radiation injury//PLoS One. 2015. V. 10. № 3. doi: 10.1371/journal.pone.0122258
- Li X. H., Ha C. T., Xiao M. MicroRNA-30 inhibits antiapoptotic factor Mcl-1 in mouse and human hematopoietic cells after radiation exposure // Apoptosis. 2016. V. 21. № 6. P. 708–720. doi: 10.1007/s10495-016-1238-1
- Malachowska B., Tomasik B., Stawiski K. et al. Circulating microRNAs as biomarkers of radiation exposure: A systematic review and meta-analysis // Int. J. Radiat. Oncol. Biol. Phys. 2020. V. 106. № 2. P. 390–402. doi: 10.1016/j.ijrobp.2019.10.028
- Guo Y., Sun W., Gong T. et al. MiR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM // Oncol. Rep. 2017. V. 37. № 4. P. 1980–1988. doi: 10.3892/or.2017.5448
- Yuan L. Q., Zhang T., Xu L. et al. MiR-30c-5p inhibits glioma proliferation and invasion via targeting Bcl2 // Transl. Cancer Res. 2021. V. 10. № 1. P. 337–348. doi: 10.21037/tcr-19-2957
- Ostadrahimi S., Fayaz S., Parvizhamidi M. et al. Downregulation of miR-1266-5P, miR-185-5P and miR-30c-2 in prostatic cancer tissue and cell lines // Oncol Lett. 2018. V. 15. № 5. P. 8157–8164. doi: 10.3892/ol.2018.8336
- Sharma S., Eghbali M. Influence of sex differences on microRNA gene regulation in disease // Biol Sex Differ. 2014. V. 5. № 1. P. 3. doi: 10.1186/2042-6410-5-3
Arquivos suplementares
