Combination of histological and transcriptomic approaches for cell types annotation in non-model organisms by example of spiny mice Acomys cahirinus
- Authors: Filatov N.S.1, Bilyalov A.I.1,2, Gazizova G.R.1, Bilyalova A.A.1, Shagimardanova E.I.3, Vorontsova M.V.4, Kiyasov A.P.1, Gusev O.A.1,5,6, Kozlova O.S.1
-
Affiliations:
- Kazan (Volgaregion) Federal University
- Loginov Moscow Clinical Scientific Center
- Kazan (Volgaregion) Federal University, Russia 2Loginov Moscow Clinical Scientific Center,
- Lomonosov Moscow State University
- Juntendo University School of Medicine
- LIFT Center LLC
- Issue: Vol 60, No 9 (2024)
- Pages: 16-24
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://kld-journal.fedlab.ru/0016-6758/article/view/667195
- DOI: https://doi.org/10.31857/S0016675824090033
- EDN: https://elibrary.ru/aezrho
- ID: 667195
Cite item
Abstract
In mammals, cartilage tissue has a low potential for regeneration. Typically, the defect site is replaced by connective tissue. The Acomys cahirinus mouse is a relatively new model for studying tissue regeneration processes, specifically the elastic cartilage of the auricle. To investigate the molecular genetic mechanisms responsible for these processes and gain insight into the cellular and tissue composition of the intact auricle, we utilized the method of single-cell RNA sequencing (scRNA-seq). This method enables quantification of gene expression in the sample and modeling of cell clustering based on expression profiles. This allows for assessment of sample heterogeneity in terms of specific cell populations. Annotation of cell types, particularly in non-model organisms, should be supported by classical morphological studies to allow for more detailed identification of cell populations. This is necessary to separate clusters of cells that are grouped statistically based on similar expression profiles of a group of genes into smaller subpopulations. The objective of this study was to annotate all cell types present in the intact Acomys cahirinus auricle using a combination of transcriptomic approaches and classical histology methods. The study resulted in the annotation of 24 cell clusters based on known marker genes and by comparing genetic and morphological data.
Full Text

About the authors
N. S. Filatov
Kazan (Volgaregion) Federal University
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008
A. I. Bilyalov
Kazan (Volgaregion) Federal University; Loginov Moscow Clinical Scientific Center
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008; Moscow, 111123
G. R. Gazizova
Kazan (Volgaregion) Federal University
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008
A. A. Bilyalova
Kazan (Volgaregion) Federal University
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008
E. I. Shagimardanova
Kazan (Volgaregion) Federal University, Russia 2Loginov Moscow Clinical Scientific Center,
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008; Moscow, 111123
M. V. Vorontsova
Lomonosov Moscow State University
Email: olga-sphinx@yandex.ru
Russian Federation, Moscow, 119991
A. P. Kiyasov
Kazan (Volgaregion) Federal University
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008
O. A. Gusev
Kazan (Volgaregion) Federal University; Juntendo University School of Medicine; LIFT Center LLC
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008; Tokyo, 113-8421 Japan; Moscow, Skolkovo, 121205
O. S. Kozlova
Kazan (Volgaregion) Federal University
Author for correspondence.
Email: olga-sphinx@yandex.ru
Russian Federation, Kazan, 420008
References
- Maden M., Varholick J.A. Model systems for regeneration: The spiny mouse, Acomys cahirinus// Development. 2020. V. 147. № 4. https://doi.org/10.1242/dev.167718
- Билялов А.И., Филимошина Д.Д., Филатов Н.С. и др. У мышей рода Acomys после травмы восстанавливается эластический хрящ ушной раковины // Гены и клетки. 2022. Т. 17. № 1. С. 42–47. (Bilyalov A.I., Filimoshina D.D., Filatov N.S. et al. In mice of the genus Acomys, the elastic cartilage of the auricle is restored after injury // Genes and cells. 2022. V. 17. № 1. P. 42–47.) https://doi.org/10.23868/202205003
- Kuksin M., Morel D., Aglave M. et al. Applications of single-cell and bulk RNA sequencing in onco-immunology // Eur. J. Cancer. 2021. V. 149. P. 193–210. https://doi.org/10.1016/j.ejca.2021.03.005
- Nguyen E.D., Fard V.N., Kim B.Y. et al. Genome report: Chromosome-scale genome assembly of the African spiny mouse (Acomys cahirinus) // bioRxiv 2023.04.03.535372. https://doi.org/10.1101/2023.04.03.535372
- Lun A.T.L., Riesenfeld S., Andrews T. et al. EmptyDrops: Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data // Genome Biol. 2019. V. 20. № 1. P. 63. https://doi.org/10.1186/s13059-019-1662-y
- Wolock S.L., Lopez R., Klein A.M. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data // Cell Syst. 2019. V. 8. № 4. P. 281–291.e9. https://doi.org/10.1016/j.cels.2018.11.005
- Hao Y., Hao S., Andersen-Nissen E. et al. Integrated analysis of multimodal single-cell data // Cell. 2021. V. 184. № 13. P. 3573–3587. e29. https://doi.org/doi: 10.1016/j.cell.2021.04.048
- Bairati A., Comazzi M., Gioria M. A comparative study of perichondrial tissue in mammalian cartilages // Tissue Cell. 1996. V. 28. № 4. P. 455–468. https://doi.org/10.1016/s0040-8166(96)80031-0
- Treuting P.M., Dintzis S.M. 22 – Special senses: Ear // Comparative Anatomy and Histology, Acad. Press, 2012. P. 419–432. https://doi.org/10.1016/B978-0-12-381361-9.00022-6
- Lefebvre V., Angelozzi M., Haseeb A. SOX9 in cartilage development and disease // Curr. Opin. Cell Biol. 2019. V. 61. P. 39–47. https://doi.org/10.1016/j.ceb.2019.07.008
- Dateki S. ACAN mutations as a cause of familial short stature // Clin. Pediatr. Endocrinol. 2017. V. 26. № 3. P. 119–125. https://doi.org/10.1297/cpe.26.119
- Batista M.A., Nia H.T., Önnerfjord P. et al. Nanomechanical phenotype of chondroadherin-null murine articular cartilage // Matrix Biol. 2014. V. 38. P. 84–90. https://doi.org/10.1016/j.matbio.2014.05.008
- Taylor S.E., Lee J., Smeriglio P. et al. Identification of human juvenile chondrocyte-specific factors that stimulate stem cell growth // Tissue Eng. Part A. 2016. V. 22. № 7–8. P. 645–653. https://doi.org/10.1089/ten.TEA.2015.0366
- Boot-Handford R.P., Tuckwell D.S. Fibrillar collagen: The key to vertebrate evolution? A tale of molecular incest // Bioessays. 2003. V. 25. № 2. P. 142–151. https://doi.org/10.1002/bies.10230
- Reed C.C., Iozzo R.V. The role of decorin in collagen fibrillogenesis and skin homeostasis // Glycoconj. J. 2002. V. 19. № 4–5. P. 249–255. https://doi.org/10.1023/A:1025383913444
- Billi A.C., Ma F., Plazyo O. et al. Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation // Sci. Transl. Med. 2022. V. 27. № 14. P. 642. https://doi.org/10.1126/scitranslmed.abn2263
- Wang S., Drummond M.L., Guerrero-Juarez C.F. et al. Single cell transcriptomics of human epidermis identifies basal stem cell transition states // Nat. Commun. 2020. V. 11. № 1. P. 4239. https://doi.org/10.1038/s41467-020-18075-7
- Alderson N.L., Maldonado E.N., Kern M.J. et al. FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain // J. Lipid Res. 2006. V. 47. № 12. P. 2772–2780. https://doi.org/10.1194/jlr.M600362-JLR200
- Xu Y., Du X., Turner N. et al. Enhanced acyl-CoA: Cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function // J. Biol. Chem. 2019. V. 294. № 50. P. 19306–19321. https://doi.org/10.1074/jbc.RA119.011160
- Shih B.B., Nirmal A.J., Headon D.J. et al. Derivation of marker gene signatures from human skin and their use in the interpretation of the transcriptional changes associated with dermatological disorders // J. Pathol. 2017. V. 241. № 5. P. 600–613. https://doi.org/10.1002/path.4864
- Polkoff K.M., Gupta N.K., Green A.J. et al. LGR5 is a conserved marker of hair follicle stem cells in multiple species and is present early and throughout follicle morphogenesis // Sci. Rep. 2022. V. 12. № 1. P. 9104. https://doi.org/10.1038/s41598-022-13056-w
- Park S., DiMaio T.A., Scheef E.A. et al. PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions // Am. J. Physiol. Cell Physiol. 2010. V. 299. № 6. P. 1468–1484. https://doi.org/10.1152/ajpcell.00246.2010
- Rossi E., Bernabeu C., Smadja D.M. Endoglin as an adhesion molecule in mature and progenitor endothelial cells: A function beyond TGF-β // Front. Med. 2019. V. 6. https://doi.org/10.3389/fmed.2019.00010
- Inoue M., Ishida T., Yasuda T. et al. Endothelial cell-selective adhesion molecule modulates atherosclerosis through plaque angiogenesis and monocyte-endothelial interaction // Microvasc. Res. 2010. V. 80. № 2. P. 179–187. https://doi.org/10.1016/j.mvr.2010.04.005
- Ma S.C., Li Q., Peng J.Y et al. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis // CNS Neurosci. Theor. 2017. V. 23. № 12. P. 947–960. https://doi.org/10.1111/cns.12764
- Fajardo L.F. The complexity of endothelial cells. A review // Am. J. Clin. Pathol. 1989. V. 92. № 2. P. 241–250. https://doi.org/10.1093/ajcp/92.2.241
- Su H., Na N., Zhang X., Zhao Y. The biological function and significance of CD74 in immune diseases // Inflamm. Res. 2017. V. 66. № 3. P. 209–216. https://doi.org/10.1007/s00011-016-0995-1
- Stephens W.Z., Kubinak J.L., Ghazaryan A. et al. Epithelial-myeloid exchange of MHC class II constrains immunity and microbiota composition // Cell Rep. 2021. V. 37. № 5. https://doi.org/10.1016/j.celrep.2021.109916
- Hou W., Kong L., Hou Z., Ji H. CD44 is a prognostic biomarker and correlated with immune infiltrates in gastric cancer // BMC Med. Genomics. 2022. V. 15. № 1. P. 225. https://doi.org/10.1186/s12920-022-01383-w
- Muruganandam M., Ariza-Hutchinson A., Patel R.A., Sibbitt W.L. Jr. Biomarkers in the pathogenesis, diagnosis, and treatment of systemic sclerosis // J. Inflamm. Res. 2023. V. 16. P. 4633–4660. https://doi.org/10.2147/JIR.S379815
- Kendirli A., de la Rosa C., Lämmle K.F. et al. A genome-wide in vivo CRISPR screen identifies essential regulators of T cell migration to the CNS in a multiple sclerosis model // Nat. Neurosci. 2023. V. 26. № 10. P. 1713–1725. https://doi.org/10.1038/s41593-023-01432-2
- Kozina A.A., Baryshnikova N.V., Ilinskaya A.Y. et al. Novel mutation in the MPZ gene causes early-onset but slow-progressive Charcot-Marie-Tooth disease in a Russian family: A case report // J. Int. Med. Res. 2022. V. 50. № 12. https://doi.org/doi: 10.1177/03000605221139718
- Smirnova E.V., Rakitina T.V., Ziganshin R.H. et al. Comprehensive atlas of the myelin basic protein interaction landscape // Biomolecules. 2021. V. 11. № 11. https://doi.org/10.3390/biom11111628
- Kim D., An H., Fan C., Park Y. Identifying oligodendrocyte enhancers governing Plp1 expression // Hum. Mol. Genet. 2021. V. 30. № 23. P. 2225–2239. https://doi.org/10.1093/hmg/ddab184
- Ruan J., Zhang L., Hu D. et al. Novel Myh11 dual reporter mouse model provides definitive labeling and identification of smooth muscle cells-brief report // Arterioscler. Thromb. Vasc. Biol. 2021. V. 41. № 2. P. 815–821. https://doi.org/10.1161/ATVBAHA.120.315107
- Goding C.R., Arnheiter H. MITF-the first 25 years // Genes Dev. 2019. V. 33. № 15–16. P. 983–1007. https://doi.org/10.1101/gad.324657.119
- Кичигина Т.Н., Грушин В.Н., Беликова И.С., Мяделец О.Д. Меланоциты: строение, функции, методы выявления, роль в кожной патологии // Вестн. Витебского гос. мед. ун-та. 2007. Т. 6. № 4. С. 5–16. https://elib.vsmu.by/handle/123/8528
- Jeong J., Han W., Hong E. et al. Regulation of NLGN3 and the synaptic Rho-GEF signaling pathway by CDK5 // J. Neurosci. 2023. V. 43. № 44. P. 7264–7275. https://doi.org/10.1523/JNEUROSCI.2309-22.2023
- Sato S., Suzuki Y., Kikuchi M. et al. Sputum neurturin levels in adult asthmatic subjects // J. Asthma Allergy. 2023. V. 16. P. 889–901. https://doi.org/10.2147/JAA.S421742
Supplementary files
