Sequencing and annotation of the chloroplast genome of Triticum timonovum Heslot et Ferrary

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The chloroplast genome of the synthetic octaploid Triticum timonovum Heslot et Ferrary k-43065 (France) was sequenced for the first time. Plastome sequencing was carried out on a Genolab M sequencer (GeneMind, China). The genome assembly was carried out using the NOVOwrap program. The size of the chloroplast genome of T. timonovum was 136158 bp. Meanwhile, the length of the inverted repeat region was 21552 bp, the SSC region was 12795 bp. and LSC – 80257 bp. The chloroplast genomes of T. timonovum and different T. timopheevii accessions from the GenBank database were compared. As for the chloroplast genome, T. timonovum was closer to T. timopheevii (AB976560.1), but differed from it by the presence of one insert A at position 47891.

全文:

受限制的访问

作者简介

А. Kuluev

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kuluev@bk.ru
俄罗斯联邦, 450054, Ufa

R. Matniyazov

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
俄罗斯联邦, 450054, Ufa

B. Kuluev

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
俄罗斯联邦, 450054, Ufa

L. Privalov

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
俄罗斯联邦, 450054, Ufa

A. Chemeris

Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kuluev@bk.ru
俄罗斯联邦, 450054, Ufa

参考

  1. Heslot H., Raymond R. Obtention experimentale d’un autotetraploide aberrant (Triticum timonovum) a partir de Triticum timopheevi Zhuk. // Compt. Rend. Hebd. Séances Acad. Sci. 1959. V. 248. P. 452–455.
  2. Мурашёв В.В., Морозова З.А. Сравнительный морфогенез Triticum timopheevii (Zhyk.) и синтезированного октоплоидного вида T. timonovum Heslot еt Ferrary // Вест. Моск. у-та. Серия 16. 2008. T. 63. № 3. C. 127–133.
  3. Badaeva E.D., Badaev N.S., Filatenko A.A. et al. Cytological investigation of cereal, hexa- and octoploid species containing G genome // Genetika (Mos.). 1990. V. 26. № 4. P. 708–716.
  4. Badaeva E.D., Filatenko A.A., Badaev N.S. Cytogenetic investigation of Triticum timopheevii (Zhuk.) Zhuk. and related species using the C-banding technique // Theor. Appl. Genet. 1994. V. 89. P. 622–628.
  5. Shi C., Hu N., Huang H. et al. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing // PLoS One. 2012. V. 7. № 2. https://doi.org/10.1371/journal.pone.0031468
  6. Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30. P. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  7. Wu P., Xu C., Chen H. et al. NOVOWrap: An automated solution for plastid genome assembly and structure standardization // Mol. Ecol. Resour. 2021. V. 21. № 6. P. 2177–2186. https://doi.org/10.1111/1755-0998.13410
  8. Shi L., Chen H., Jiang M. et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer // Nucl. Ac. Res. 2019. V. 47. P. W65–W73. https://doi.org/10.1093/nar/gkz345
  9. Zheng S., Poczai P., Hyvönen J. et al. Chloroplot: An online program for the versatile plotting of organelle genomes // Front Genet. 2020. V. 11. https://doi.org/10.3389/fgene.2020.576124
  10. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability // Mol. Biol. Evol. 2013. V. 30. № 4. P. 772–780. https://doi.org/10.1093/molbev/mst010
  11. Han M.V., Zmasek C.M. phyloXML: XML for evolutionary biology and comparative genomics // BMC Bioinformatics. 2009. V. 10. P. 1–6. https://doi.org/10.1186/1471-2105-10-356
  12. Mori N., Kondo Y., Ishii T. et al. Genetic diversity and origin of timopheevi wheat inferred by chloroplast DNA fingerprinting // Bred. Sci. 2009. V. 59. P. 571–578. https://doi.org/10.1270/jsbbs.59.571
  13. Gogniashvili M., Naskidashvili P., Bedoshvili D. et al. Complete chloroplast DNA sequences of Zanduri wheat (Triticum spp.) // Genet. Resour. Crop. Evol. 2015. V. 62. P. 1269–1277. https://doi.org/10.1007/s10722-015-0230-x

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. a is a visual representation in the form of a ring of the sequenced chloroplast genome of T. timonovum k-43065. The genes are displayed in different colors, the blue circle in the middle shows the GC level. IRA is the inverted repeat region A, IRB is the inverted repeat region B. Genes located outside the outer circle are transcribed clockwise, and genes located inside are transcribed counterclockwise. b is a phylogenetic tree based on the alignment of nucleotide sequences of chloroplast genomes of various T. timopheevii samples from GenBank, T. turgidum MG958546.1 and T. timonovum k-43065. The Secale cereale subsp is presented as an appearance. segetale (MZ507427.1).

下载 (597KB)

版权所有 © Russian Academy of Sciences, 2024