On Stabilizing the Rate of Isonymy Divergence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical analysis of the surname state of the population (the vector of namesake concentrations in the male component of the population) and its dynamics as a result of random surname drift is presented. An approximation of such a process by the Wright-Fisher model of a population with non-overlapping generations without selection pressure is used, i.e., an approximation by a sequence of nested random samples with the replacement from fathers’ surnames in the population. The sample size is N/2 according to the size of the male component in the population of size N. In the same population, processes of random drift of both surnames and genes simultaneously occur. Their cardinal difference is that the sample size of surnames is four times smaller than the sample size of autosomal locus alleles. The analysis of random drift is simplified when moving from concentration coordinates to the square roots of them. As generations change, the state receives a sample deviation, measured by angular distance, and its mean square gives the rate of divergence, stabilizing in the new coordinates. An adaptation (in relation to the analysis of surname drift) of a known in population genetics result about the nature of divergence at a stage of a relatively small number of generations compared to the size of the population is given. The divergence of surnames occurs four times faster than the divergence of allele concentrations.

Full Text

Restricted Access

About the authors

V. P. Passekov

Federal Research Center “Computer Science and Control”, Russian Academy of Sciences

Author for correspondence.
Email: pass40@mail.ru
Russian Federation, Moscow 119991

References

  1. Lasker G.W. Surnames and Genetic Structure. CambridgeUniv. Press, 2005. 148 p.
  2. King T.E., Jobling M.A. What’s in a name Y chromosomes, surnames and the genetic genealogy revolution // Trends in Genetics. 2009. V. 25. Iss. 8. P. 351–360.
  3. Jobling M.A. In the name of the father- surnames and genetics // Trends in Genetics. 2001. V. 17. № 6. P. 353–357.
  4. Балановская Е.В., Балановский О.П. Русский генофонд на Русской равнине. М.: Луч, 2007. 415 с.
  5. Сорокина И.Н., Чурносов М.И., Балтуцкая И.В. и др. Антропогенетическое изучение населения Центральной России. М.: Изд-во РАМН, 2014. 336 с.
  6. Colantonio S.E., Lasker G.W., Kaplan B.A., Fuster V. Use of surname models in human population biology: A review of recent developments // Human Biology. 2003. V. 75. № 6. P. 785–807.
  7. Crow J.F., Mange A.P. Measurement of inbreeding from the frequency of marriages between persons of the same surname // Social Biology. 1982. V. 29. № 1/2. P. 101–105.
  8. Crow J.F. The estimation of inbreeding from isonymy // Human Biology. 1980. V. 52. № 1. P. 1–14.
  9. Crow J.F. The estimation of inbreeding from isonymy (reprint) with an update // Human Biology. 1989. V. 61. № 5/6. Special issue on foundations of anthropological genetics. P. 935–948.
  10. Rogers A.R. Doubts about isonymy // Human Biology. 1991. V. 63. № 5. P. 663–668.
  11. Ли Ч. Введение в популяционную генетику. М.: Мир, 1978. 555 с. (Li C.C. First course in population genetics. California: Boxwood Press Pacific Grove, 1976).
  12. Кимура М. Молекулярная эволюция: теория нейтральности. М.: Мир. 1985. 394 с. (Kimura M. The Neutral Theory of Molecular Evolution. Cambridge: Cambr. Univ. Press., 1983)
  13. Хедрик Ф. Генетика популяций. М.: Техносфера. 2003. 592 c. (Hedrick P.W. Genetics of Populations. 2nded. Boston: Jones and Bartlett Publ., 2000. 553 pp.)
  14. Малютов М.Б., Пасеков В.П. Об одной статистической задаче популяционной генетики // Теория вероятностей и ее применения. 1971. Т. 16. Вып. 3. С. 579–581. (Ма1уutоv М.В., Рasекоv V.P. On one statistical problem of population genetics // Theory of Probability and its Applications. 1971. Iss. V. 16. № 3. P. 559–566)
  15. Пасеков В.П. К анализу случайных процессов изонимии. I. Структура изонимии // Генетика. 2021. Т. 57. № 10. С. 1194–1204. doi: 10.31857/S001667582110009X (Passekov V.P. To the Analysis of Random Processes of Isonymy: I. Isonymic Structure // Rus. J. Genet. 2021. V. 57. № 10, P. 1214–1222. doi: 10.1134/S1022795421100094)
  16. Fisher R.A. On the dominance ratio // Proc. R. Soc. Edinb. 1922. V. 42. P. 321–341 (Bull. Math. Biol. 1990. V. 52. № 1–2. P. 297–318)
  17. Fisher R.A. The Genetical Theory of Natural Selection. Oxford: Clarendon Press, 1930. 272 p.
  18. Bhattacharyya A. On a measure of divergence between two multinomial populations // Sankhya. 1946. V. 7. Part 4. P. 401–406.
  19. Edwards A.W.F. Distances between populations on the basis of gene frequencies // Biometrics. 1971. V. 27. № 4. P. 873–881.
  20. Вейр Б. Анализ генетических данных: дискретные генетические признаки. М.: Мир, 1995. 400 с. (Weir B.S. Genetic data analysis: Methods for discrete population genetic data. Sunderland: Sinauer, 1990.)
  21. Cavalli-Sforza L.L., Edwards A.W.F. Phylogenetic analysis. Models and estimation procedures // Am. J. Hum. Genet. 1967. V. 19. P. 233–257 (Evolution. 1967. V. 21. № 3. P. 550–570).
  22. Свирежев Ю.М., Пасеков В.П. Основы математической генетики. М.: Наука, 1982. 511 с. (Svirezhev Y.M., Passekov V.P. Fundamentals of mathematical evolutionary genetics. Kluwer Acad. Publ., Dordrecht et al., 1990. 395 p.)
  23. Antonelli P.L., Strobeck C. The geometry of random drift. I. Stochastic distance and diffusion // Adv. Appl. Probab. 1977. V. 9. № 2. P. 238–249.
  24. Papangelou F. The large deviations of a multi-allele Wright–Fisher process mapped on the sphere // Ann. Appl. Prob. 2000. V. 10. № 4. P. 1259–1273.
  25. Молчанов С.А. Диффузионные процессы и риманова геометрия // УМН. 1975. Т. 30. Вып. 1(181). С. 3–59. (Molchanov S.A. Diffusion processes and Riemannian geometry // Russ. Math. Surveys. 1975. V. 30. Iss. 1. P. 1–63)
  26. Hofrichter J., Jost J., Tran T.D. Information geometry and population genetics: The mathematical structure of the Wright–Fisher model. Springer, 2017. 320 p.
  27. Пасеков В.П. Описание дивергенции субпопуляций в иерархической системе при анализе изонимии. I. Дисперсия как показатель дивергенции // Генетика. 2022. Т. 58. № 6. С. 713–727 doi: 10.31857/S0016675822060054 (Passekov V.P. Description of Divergence of Subpopulations in the Hierarchical System When Analyzing Isonymy: I. Variance as an Indicator of Divergence // Rus. J. Genet. 2022. V. 58, № 6. P. 736–750. doi: 10.1134/S1022795422060059)
  28. Пасеков В.П., Ревазов А.А. К популяционной генетике населения европейского севера СССР. Сообщение I. Данные по структуре шести деревень Архангельской области // Генетика, Т. 11. № 7. 1975. С. 145–155.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The space of population states in different coordinate systems. a – shaded angle θ between the radius vector y₀ and the abscissa axis; b – shaded part of the plane as the space of population states in terms of group concentrations; c – shaded part of the sphere as the space of population states in terms of square roots of concentrations. See text for explanations.

Download (109KB)
3. Fig. 2. Between-group, within-group, and complete covariance matrices of population state concentrations: □ – population designation; y(0) – state of the parent population; y(1) – random states of its descendants, first-generation populations, the spread of possible states y(1) is characterized by the covariance matrix V(y(1)|y(0)), which serves as the between-group covariance matrix for the next-generation populations, where y(0) is fixed; y(2) – random states of populations, second-generation descendants of the parent population. They form a metapopulation consisting of groups originating from individual first-generation populations and with within-group covariance matrices V(y(2)|y(1)). Here y(1) varies randomly between groups; The next line refers to the second generation without dividing its populations into groups, the spread of which is characterized by the full covariance matrix Vs(y(2)). The arrows pointing from top to bottom connect the parent population with the offspring population.

Download (54KB)

Copyright (c) 2024 Russian Academy of Sciences