An Increase in The Cross-Section of Two-Photon Absorption of Styrene Dye in Supramolecular Complexes with Cucurbituriles
- 作者: Petrov N.H.1,2, Ivanov A.A.1,3, Ivanov D.A.1, Fedotov A.B.3, Lanin A.А.3, Chebotarev A.S.3
-
隶属关系:
- Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Lomonosov Moscow State University
- 期: 卷 58, 编号 3 (2024)
- 页面: 198-202
- 栏目: PHOTONICS
- URL: https://kld-journal.fedlab.ru/0023-1193/article/view/661344
- DOI: https://doi.org/10.31857/S0023119324030033
- EDN: https://elibrary.ru/UUSJPZ
- ID: 661344
如何引用文章
详细
Two-photon absorption cross sections of aqueous solutions of the styryl dye trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide (DASPI) and its inclusion complexes with cucurbit[n]urils (CB[n] n = 6–8) were measured using fluorescence spectroscopy. A nonmonotonic dependence of the cross-section size on the excitation wavelength and on the cavitand cavity size was found. Compared with a free dye, a sevenfold increase in the two-photon absorption cross section was observed in DASPI inclusion complexes with CB[8] at an excitation wavelength of 980 nm.
全文:

作者简介
N. Petrov
Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Email: ivanovd@photonics.ru
俄罗斯联邦, Moscow; Dolgoprudny
A. Ivanov
Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: ivanovd@photonics.ru
俄罗斯联邦, Moscow; Moscow
D. Ivanov
Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ivanovd@photonics.ru
俄罗斯联邦, Moscow
A. Fedotov
Lomonosov Moscow State University
Email: ivanovd@photonics.ru
俄罗斯联邦, Moscow
A. Lanin
Lomonosov Moscow State University
Email: ivanovd@photonics.ru
俄罗斯联邦, Moscow
A. Chebotarev
Lomonosov Moscow State University
Email: ivanovd@photonics.ru
俄罗斯联邦, Moscow
参考
- Göppert-Mayer M. // Ann. Phys. 1931. V. 401. P. 273–294.
- Collini E. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 3725–3736.
- Tsai T.-H., Lin C.-Y., Tsai H.J. et al. // Opt. Lett. 2006. V. 31. № 7. P. 930–932.
- Wiedenmann J., Oswald F., Nienhaus G. // IUBMB life. 2009. V. 61. № 11. P. 1029–1042.
- Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. // Physiol. Rev. 2010. V. 90. P. 1103–1163.
- Wloka T., Gottschaldt M., Schubert U.S. // Chem. Eur. J. 2022. V. 28.
- Zheng Y.-C., Zhao Y.-Y., Zheng M.-L. // ACS Appl. Mater. Interfaces. 2019. V. 11. P. 1782–1789.
- Lee J.W., Samal S., Selvapalam N. et al. // Acc. Chem. Res. 2003. V. 36. P. 621.
- Dsouza R.N., Pischel U., Nau W.M. // Chem. Rev. 2011. V. 111. P. 7941–7980.
- Ivanov D.A., Svirida A.D., Petrov N.H. // Chemistry of high energies. 2022. V. 56. № 3. P. 171–180.
- Ivanov D.A., Petrov N.Kh., Nikitina E.A. et al. // J. Phys. Chem. A. 2011. V. 115. P. 4505.
- Lanin A.A., Chebotarev A.S., Pochechuev M.S. et al. // J. Biophotonics. 2019. V. 13.
- Chebotarev A.S., Lanin A.A., Raevskii R.I. et al. // J. Raman Spectroscopy. 2021. V. 52. P. 1552–1560.
- Makarov N.S., Drobizhev M., Rebane A. // Optics express. 2008. V. 16. P. 4029–4047.
- Reguardati S., Pahapill J., Mikhailov A. et al. // Optics Express. 2016. V. 24. P. 9053–9066.
- Xu Ch., Webb W.-W. // J. Opt. Soc. Am. B. 1996. V. 13. P. 481–491.
- Svirida A.D., Ivanov D.A., Petrov N.H. et al. // Chemistry of high energies. 2016. V. 50. № 1. P. 23–28.
补充文件
