Direct One-Stage Plasma Chemical Synthesis of Nanostructured Thin Films of the System β-Ga2O3-GaN of Different Composition

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For the first time, nanostructured thin films of the β-Ga2O3−GaN system were obtained by plasma chemical deposition from the gas phase (PECVD) on c-sapphire substrates. High-purity metallic gallium, as well as high-purity gaseous nitrogen and oxygen were used as sources of macro components. The low-temperature nonequilibrium plasma of an inductively coupled HF (40.68 MHz) discharge at a reduced pressure (0.01 Torr) was the initiator of chemical transformations between the starting substances. A mixture of oxygen and nitrogen was used as a plasma-forming gas. The plasma chemical process was studied using the optical emission spectroscopy (OES) method. The obtained thin films of the β-Ga2O3−GaN system with a GaN phase content of 2 to 7% were characterized by various analytical methods.

Texto integral

Acesso é fechado

Sobre autores

L. Mochalov

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Rússia, Nizhny Novgorod

M. Kudryashova

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Rússia, Nizhny Novgorod

M. Vshivtsev

Lobachevsky Nizhny Novgorod State University

Autor responsável pela correspondência
Email: mvshivtcev@mail.ru
Rússia, Nizhny Novgorod

Yu. Kudryashov

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Rússia, Nizhny Novgorod

I. Prokhorov

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Rússia, Nizhny Novgorod

A. Knyazev

Lobachevsky Nizhny Novgorod State University

Email: mvshivtcev@mail.ru
Rússia, Nizhny Novgorod

A. Almaev

Focon LLC

Email: mvshivtcev@mail.ru
Rússia, Kaluga

N. Yakovlev

Focon LLC

Email: mvshivtcev@mail.ru
Rússia, Kaluga

E. Chernikov

Focon LLC

Email: mvshivtcev@mail.ru
Rússia, Kaluga

N. Erzakova

Focon LLC

Email: mvshivtcev@mail.ru
Rússia, Kaluga

Bibliografia

  1. Afzal A. // J. Materiomics. 2019. V. 5. № 4. P. 542.
  2. Jang S., Jung S., Kim J. et al. // ECS J Solid State Sci Technol. 2018. V. 7. № 7. P. 3180.
  3. Hoefer U., Frank J., Fleischer M. // Sens. Actuators B Chem. 2001. V. 78. № 1. P. 6.
  4. Lampe U., M. Fleischer M., Meixner H. // Sens. Actuators B Chem. 1994. V. 17. P. 187.
  5. Fleischer M., Hanrieder W., Meixner H. // Thin Solid Films. 1990. V. 190. P. 93.
  6. Liu Y., Parisi J., Sun X., Lei Y. // J. Mater. Chem. A. 2014. V. 2 P.9919.
  7. Ghosh A., Zhang C., Shi S.Q., Zhang H. // Clean – Soil, Air, Water. 2019. V. 47. P. 1800491.
  8. Fleischer M., Giber J., Meixner H. // Appl. Phys. 1992. V. 54. P. 560.
  9. Bartic M. // Phys Status Solidi. 2016. V. 213. P. 457.
  10. Liu Z., Yamazaki T., Shen Y. et al. // Sens Actuators B Chem. 2008. V. 129. P. 666.
  11. Pandeeswari R., Jeyaprakash B.G. // Sens Actuators B Chem. 2014. V. 195. P. 206.
  12. Li Y., Trinchi A., Wlodarski W. et al. // Sens Actuators B Chem. 2003. V. 93. P. 431.
  13. Mochalov L., Logunov A., Kudryashov M. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. P. 073002.
  14. Mochalov L.A., Logunov A.A., Prokhorov I.O. // Journal of Physics: Conference Series. 2021. V. 1967. P. 012036.
  15. Zhang H., Deng J.X., Kong L. et al. // Micro & Nano Lett. 2019. V. 14. P. 62.
  16. Suzhen L., Linpeng D. Xiaofan M. J. // J. Alloys Compd. 2020. V. 812. P. 1520262.
  17. Liu L.L., Li M.K., Yu D.Q. // Appl. Phys. A. 2010. V. 98. P. 831.
  18. Sun R., Zhang H.-Y., Wang G.-G. et al. // Superlattices Microstruct. 2014. V. 65. P. 146.
  19. Zhang Y., Yan J., Li Q. et al. // Physica B. V. 406. P. 3079.
  20. Roehrens D. // J. Solid State Chem. 2010. V. 183. P. 532.
  21. Mochalov L.A., Logunov A.A., Kudryashov M.A. // Journal of Physics: Conference Series. 2021. V. 1967. P. 012037.
  22. Mochalov L., Logunov A., Gogova D. et al. // Opt Quantum Electron. 2020. V. 52. P. 510.
  23. Bagolini A., Gaiardo A., Crivellari M. et al. // Sens Actuator B Chem. 2019. V. 292. P. 225.
  24. Mochalov L., Logunov A., Vorotyntsev V. // Sep. Purif. Technol. 2021 V. 258. P. 118001.
  25. Mochalov L., Logunov A., Kitnis A. et al. // Sep. Purif. Technol. 2020. V. 238. P.116446.
  26. Logunov A., Mochalov L., Gogova D., Vorotyntsev V. // International Conference on Transparent Optical Networks. 2019. P. 8840331.
  27. Yanyan Z., Ray L. Frost. // J. Raman Spectrosc. 2008. V. 39. P. 1494.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic representation of a plasma chemical plant for the synthesis of β-Ga2O3−GaN thin films

Baixar (259KB)
3. Fig. 2. The emission spectrum of the plasma of the Ga-H2-O2-N2 mixture at different nitrogen contents: a – 1%; b – 3%; c – 7%. The inset shows a section of the spectrum in the range of 280-1100 nm

Baixar (203KB)
4. Fig. 3. SEM images of gallium oxide samples doped with gallium nitride. The upper row of the scale is 1 micron, the lower row of the scale is 100 nm

Baixar (537KB)
5. Fig. 4. AFM image of a polycrystalline sample of gallium oxide doped with gallium nitride (β-Ga2O3−95%−GaN−5%)

Baixar (193KB)
6. Fig. 5. Raman spectra of gallium oxide films doped with GaN with different doping concentrations

Baixar (216KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024