Low-energy excited singlet states of para-aminothiophenol in methanol and n-hexane solutions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Optical absorption spectra of para-aminothiophenol in n-hexane and methanol solutions have been obtained. The calculation has been carried out using the TDDFT B3LYP/6-311+G(d,p) method taking into account the polarizable continuum model of the electronic spectra of the p-aminothiophenol molecule in n-hexane and its hydrogen-bonded complex with two methanol molecules in a methanol solution. Based on these calculations, the main absorption bands are interpreted and it is shown that the second excited singlet state is formed by a π → σ* electronic transition, which makes a significant contribution to the first absorption band of p-aminothiophenol in these solutions.

Толық мәтін

Рұқсат жабық

Авторлар туралы

S. Tseplina

Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: SN_Tseplina@mail.ru
Ресей, Ufa

E. Tseplin

Institute of Molecular and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences

Email: SN_Tseplina@mail.ru
Ресей, Ufa

Әдебиет тізімі

  1. Yan X., Zhao H., Song H., Ma J., Shi X. // Spectrochim. Acta Part A. 2022. V. 281. № 15, 121566.
  2. Wang H., Liu Y., Rao G., Wang Y., Du X., Hu A., et al. // Analyst. 2021. V. 146, № 16. P. 5008.
  3. Itoh T., Procházka M., Dong Z.-C., Ji W., Yamamoto Y.S., Zhang Y., Ozaki Y. // Chem. Rev. 2023. V. 123. № 4. Р. 1552.
  4. Al-Shammari R.M., Baghban M.A., Alattar N., Gowen A., Gallo K., Rice J.H., Rodriguez B.J. // ACS Applied Materials & Interfaces. 2018. V. 10. № 36. Р. 30871.
  5. File N., Carmicheal J., Krasnoslobodtsev A.V., Japp N.C., Souchek J.J., Chakravart S., et al. // Biosensors. 2022. V. 12. № 1. Р. 25.
  6. Valério E., Abrantes L.M., Viana A.S. // Electroanalysis. 2008. V. 20. №. 22. P. 2467.
  7. Park W.-H., Kim Z.H. // Nano Letters. 2010. V. 10. № 10. Р. 4040.
  8. Tsutsui M., Taniguchi M., Kawai T. // J. Am. Chem. Soc. 2009. V. 131. № 30. Р. 10552.
  9. Bhadoria P., Ramanathan V. // Chem. Phys. 2023. V. 571. 111910.
  10. Alessandri I. // Angew. Chem. Int. Ed. 2022. V. 61. № 28. e202205013.
  11. Watanabe S., Kaneko S., Fujii S., Nishino T., Kasai S., Tsukagoshi K., Kiguchi M. // Japanese Journal of Applied Physics. 2017. V. 56. № 6. 065202.
  12. Zhao L.-B., Huang R., Huang Y.-F., Wu D.-Y., Ren B., Tian Z.-Q. // J. Chem. Phys. 2011. V. 135. № 13. 134707.
  13. Osawa M., Matsuda N., Yoshii K., Uchida I. // J. Phys. Chem. 1994. V. 98. № 48. P. 12702.
  14. Cramer C.J., Truhlar D.G. // Chem. Rev. 1999. V. 99. № 8. P. 2161.
  15. Tomasi J., Persico M. // Chem. Rev. 1994. V. 94. № 7. P. 2027.
  16. Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999.
  17. Vetta M., Menger M.F.S.J., Nogueira J.J., Gonzalez L. // J. Phys. Chem. B. 2018. V. 122. № 11. P. 2975.
  18. Gustavsson T., Banyasz A., Lazzarotto E., Markovitsi D., Scalmani G., Frisch M.J., et al. // J. Am. Chem. Soc. 2006. V. 128. № 2. P. 607.
  19. Sancho M.I., Almandoz M.C., Blanco S.E., Castro E.A. // Int. J. Mol. Sci. 2011. V. 12. P. 8895.
  20. Цеплина С.Н., Цеплин E.E. // Опт. и спектр. 2021. Т. 129. № 5. С. 599.
  21. Tseplin E.E., Tseplina S.N. // Chem. Phys. Lett. 2019. V. 716. P. 142.
  22. Цеплин E.E., Цеплина С.Н., Хвостенко O.Г. // Опт. и спектр. 2018. Т. 125. № 4. С. 485.
  23. Improta R., Barone V. // J. Am. Chem. Soc. 2004. V. 126. №. 44. P. 14320.
  24. Цеплина С.Н., Цеплин E.E. // Химия высоких энергий. 2018. Т. 52. № 6. С. 517.
  25. Цеплин E.E., Цеплина С.Н., Хвостенко O.Г. // Опт. и спектр. 2016. Т. 120. № 2. С. 286.
  26. Reichardt C., Welton T. Solvents and Solvent Effects in Organic Chemistry. Weinheim WILEY-VCH Verlag GmbH & Co. KGaA, 2011. 718 p.
  27. Merlen A., Gadenne V., Romann J., Chevallier V., Patrone L., Valmalette J.C. // Nanotechnology. 2009. V. 20. № 21. 215705.
  28. Yamamoto Y.S., Kayano Y., Ozaki Y., Zhang Z., Kozu T., Itoh T., Nakanishi S. Single-Molecule Surface-Enhanced Raman Scattering Spectrum of Non-Resonant Aromatic Amine Showing Raman Forbidden Bands. 2016. http://arxiv.org/abs/1610.08270
  29. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al, Gaussian 09, Revision C.1, Gaussian, Inc., Wallingford CT, 2009.
  30. Zhurko G.A., Zhurko D.A. Chemcraft version 1.7 [Электронный ресурс] Режим доступа: https://www.chemcraftprog.com

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. (a) Optical absorption spectrum of p-aminothiophenol in n-hexane solution; insert – low-energy part of the spectrum with concentration increased by 3 times, decomposed into Gaussian curves; (b) calculation by PCM TDDFT B3LYP/6-311+G(d,p) method of the electronic spectrum of p-aminothiophenol molecule in n-hexane; the upper part of the figure shows the geometric structure of the molecule optimized for total energy.

Жүктеу (281KB)
3. Fig. 2. (a) Optical absorption spectrum of p-aminothiophenol in methanol solution, with decomposition of the low-energy part of the spectrum into Gaussian curves; (b) calculation by the PCM TDDFT B3LYP/6-311+G(d,p) method in methanol solution of the electronic spectrum of the hydrogen complex of the p-aminothiophenol molecule with two methanol molecules; the upper part of the figure shows the geometric structure of the calculated hydrogen complex optimized for the total energy.

Жүктеу (285KB)

© Russian Academy of Sciences, 2024