Direct effect of fast electrons on hexafluoroacetylacetone
- 作者: Vlasov S.I.1, Kholodkova E.M.1, Ponomarev A.V.1
-
隶属关系:
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
- 期: 卷 58, 编号 4 (2024)
- 页面: 304-311
- 栏目: RADIATION CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0023-1193/article/view/661412
- DOI: https://doi.org/10.31857/S0023119324040097
- EDN: https://elibrary.ru/TPWFGC
- ID: 661412
如何引用文章
详细
The radiolysis of liquid and boiling hexafluoroacetylacetone was studied. The structure of the main radiolysis products indicates the predominance of C–CF3 and C–F bond cleavages. Ten compounds are formed, including monoketones, trifluoroacetic acid, keto alcohols, and tautomeric tetraketones. Carbon monoxide is the main gaseous product and its yield increases under boiling conditions. The initial yield of hexafluoroacetylacetone degradation is 0.29 ± 0.2 and 0.32 ± 0.2 µmol J-1 at 293 and 343 K, respectively. No accumulation of free HF is observed at low doses. The products of radiolysis are less diverse than in acetylacetone, which is due to the increased “cage” effect, the increase in the Onsager radius and the ability of trifluoromethyl groups to dissipate excitation energy.
全文:

作者简介
S. Vlasov
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
E. Kholodkova
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
A. Ponomarev
A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS
编辑信件的主要联系方式.
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow
参考
- Utke I., Swiderek P., Höflich K., Madajska K., Jurczyk J., Martinović P., Szymańska I.B. // Coord. Chem. Rev. 2022. V. 458. P. 213851.
- Travnikov S.S., Fedoseev E.V., Davydov A.V., Myasoedov B.F. // J. Radioanal. Nucl. Chem. Lett. 1985. V. 93. P. 227.
- Gandomi F., Vakili M., Takjoo R., Tayyari S.F. // J. Mol. Struct. 2022. V. 1248. P. 131347.
- Lutoshkin M.A., Taydakov I.V. // J. Solution Chem. 2023. V. 52. P. 304.
- Liu H., Wang X., Lan Z., Xu H. // Sep. Purif. Technol. 2021. V. 262. P. 118309.
- Shahbazi S., Stratz S.A., Auxier J.D., Hanson D.E., Marsh M.L., Hall H.L. // J. Radioanal. Nucl. Chem. 2017. V. 311. P. 617.
- De Vries B., Muyskens M. // Comput. Theor. Chem. 2016. V. 1097. P. 15.
- Haugen E.A., Hait D., Scutelnic V., Xue T., Head-Gordon M., Leone S.R. // J. Phys. Chem. A 2023. V. 127. P. 634.
- Lugo P.L., Straccia V.G., Rivela C.B., Patroescu-Klotz I., Illmann N., Teruel M.A., Wiesen P., Blanco M.B. // Chemosphere 2022. V. 286. P. 131562.
- Gutiérrez-Quintanilla A., Chevalier M., Platakyté R., Ceponkus J., Crépin C. // Eur. Phys. J. D 2023. V. 77. P. 158.
- Vlasov S.I., Smirnova A.A., Ponomarev A.V., Uchkina D.A., Sholokhova A.Yu., Mitrofanov A.A. // High Energy Chem. 2023. V. 57. P. 258.
- Gromov A.A., Zhanzhora A.P., Kovalenko O.I. // Meas. Stand. Ref. Mater. 2022. V. 17. P. 23.
- Uchkina D.A., Ponomarev A.V. // Mendeleev Commun. 2023. V. 33. P. 390.
- Vlasov S.I., Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2021. V. 55. P. 393.
- Traven V.F. Frontier orbitals and properties of organic molecules (Ellis Horwood Series in Organic Chemistry) / Mellor, J. ed. New York: Ellis Horwood Ltd, 1992.
- Woods R., Pikaev A. Applied radiation chemistry. Radiation processing. NY: Wiley, 1994.
- Shuman N.S., Miller T.M., Friedman J.F., Viggiano A.A., Maergoiz A.I., Troe J. // J. Chem. Phys. 2011. V. 135. P. 054306.
- Ómarsson B., Engmann S., Ingólfsson O. // RSC Adv. 2014. V. 4. P. 33222.
- Zhestkova T.P., Zhukova T.N., Ponomarev A.V., Tananaev I.G. // Mendeleev Commun. 2008. V. 18. P. 338.
- Disselkoen K.R., Alsum J.R., Thielke T.A., Muyskens M.A. // Chem. Phys. Lett. 2017. V. 672. P. 112.
- Belova E.V., Ponomarev A.V., Smirnov A.V. // J. Radioanal. Nucl. Chem. 2022. V. 331. P. 4405.
补充文件
