Kinetics of radiation-oxidative aging of polyamide fibers and composites based on them

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Kinetics of the decrease in the strength of polyamide PA-6 (poly-ε-caprolactam) fibers by X-ray irradiation in air at absorbed dose rates ranging within 0.16–10 Gy/s has been studied. It has been shown that strength of irradiated polyamide PA-6 fibers decreases to a certain limiting value depending on the dose rate and can be described by the kinetics of a reversible pseudo-first-order reaction. The proposed structural-kinetic model of radiation–oxidative aging of fibers takes into account the opposite effects of destruction and crosslinking of tie macromolecules on the strength of the oriented polymer (fiber),and structural features of the oriented polymer. The model agrees well with experiment and allows us to describe the change in the strength of an oriented polymer (fibers PA-6) and a unidirectional composite (impregnated strands) based on them during the simultaneous occurrence of processes of radiation–oxidative degradation and crosslinking of macromolecular chains.

Full Text

Restricted Access

About the authors

A. A. Dalinkevich

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Research Institute of Mechanics, Lomonosov Moscow State University

Author for correspondence.
Email: dalinckevich@yandex.ru
Russian Federation, Moscow; Moscow

I. M. Piskakev

Research Institute of Nuclear Physics. D.V. Skobeltsyn, Lomonosov Moscow State University

Email: dalinckevich@yandex.ru
Russian Federation, Moscow

L. V. Fomin

Research Institute of Mechanics, Lomonosov Moscow State University

Email: dalinckevich@yandex.ru
Russian Federation, Moscow

T. A. Nenasheva

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: tnenasheva@inbox.ru
Russian Federation, Moscow

References

  1. Sirota, A.G., Verkhovets, A.P., and Utevskii, L.E., Vysokomol. Soedin., Ser. B, 1976, vol. 18, no. 9, p. 661.
  2. Dalinkevich, A.A., Piskarev, I.M., Fomin, L.V., and Nenasheva, T.A., High Energy Chem., 2023, vol. 55, no. 3, p. 253.
  3. Dalinkevich, A.A., Piskarev, I.M., Fomin, L.V., and Nenasheva, T.A., High Energy Chem., 2024, vol. 58, no. 1, p. 120.
  4. Zubov, Yu.A., Tikhomirov, V.S., Chvalun, S.N., Turetskii, A.A., and Bakeev, N.F., Vysokomol. Soedin., Ser. A, 1990, vol. 32, no. 6, p. 1202.
  5. Zubov, Yu.A., Selikhova, V.I., Tikhomirov, V.S., and Bakeev, N.F., Vysokomol. Soedin., Ser. A, 1991, vol. 33, no. 9, p. 687.
  6. Kostoski, D. and Stojanovic, Z., Polym. Degrad. Stab., 1995, vol. 47, p. 353.
  7. The Radiation Chemistry of Macromolecules, Dole, M., Ed., New York: Academic, 1972.
  8. Pikaev, A.K., Sovremennaya radiatsionnaya khimiya: Tverdoe telo i polimery: Prikladnye aspekty (Modern Ra-diation Chemistry: Solids and Polymers: Applied Aspects). Moscow: Nauka, 1987, pp. 181–186; Finkel’, E.E., Karpov, V.L., and Berlyant, S.M., Tekhnologiya radiatsionnogj modfitsirovaniya poliolefinov (Technology of Radiation Modification of Polyolefins), Moscow: Energoatomizdat, 1983.
  9. Shershneva, I.N., Cand. Sci. (Eng.) Dissertation, Chernogolovka: Inst. for Problems of Chemical Physics, 2022.
  10. Olkhov, Yu.A., Allayarov, S.R., Nikolskii, V.G., and Asamov, M.K., High Energy Chem., 2018, vol. 52, no. 2, p. 138.
  11. Kvachadze, N.G., Gorshkova, I.A., and Tomashevskii, E.E., Polym. Sci., Ser. A, 1996, vol. 38, no. 8, p. 849.
  12. Milinchuk, V.K., Klinshpont, E.R., and Pshezhetskii, S.Ya., Makroradikals (Macroradicals), Moscow: Khimiya, 1980.
  13. Perepelkin, K.E., Struktura i svoisstva volokon (Fiber Structure and Properties), Moscow: Khimiya, 1985.
  14. Regel’, V.G., Slutsker, A.I., and Tomashevskii, E.E., Kineticheskaya priroda prochnosti tverdykh tel (Kinetic Nature of Strength of Solids), Moscow: Nauka, 1972. pp. 273−364.
  15. Marikhin, V.A. and Myasnikova, L.P., Nadmolekulyarnaya struktura polimerov (Supramolecular Structure of Polymers), Leningrad: Khimiya, 1977, pp. 86−160.
  16. Dalinkevich, A.A., Drobyshev, V.I., and Piskarev, I.M., Vysokomol. Soedin., Ser. A, 1995, vol. 37, no. 11, p. 1868.
  17. Dalinkevich, A.A., Piskarev, I.M., and Shlyapnikov, Yu.A., Vysokomol. Soedin., Ser. A, 1993, vol. 35, no. 7, p. 830.
  18. Dalinkevich, A.A., Piskarev, I.M., and Shlyapnikov, Yu.A., Polym. Sci., Ser. A, 1997, vol. 39, no. 2, p. 140.
  19. Emanuel, N.M. and Knorre, D.G., Kurs khimicheskoi kinetiki (The Course of Chemical Kinetics), Moscow: Vysshaya Shkola, 1984, pp. 143−147

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in the relative tensile strength of PA-6 fibers as a result of their radiation oxidation in air at different dose rates P of X-ray radiation. T = 295 K. P = 0.16 (1); 0.33, (2); 2.0 (3); 5.0 (4); and 10.0 (5) Gy/s. The dashed lines show the values ​​of the ratio σ∞(P)/σo, which characterizes the ultimate decrease in the strength of the threads at a given dose rate.

Download (128KB)
3. Fig. 2. Dependence of the logarithm of the relative strength on the absorbed dose during radiation oxidation of PA-6 fibers. The values ​​of σ∞ for each dose rate correspond to the data in Fig. 1. The values ​​of the dose rates are the same as in Fig. 1. T = 295 K.

Download (106KB)
4. Fig. 3. Kinetics of strength reduction of microplastic (based on reinforcing thread PA6 and polyurethane binder) under irradiation in air. Dashed lines show the values ​​of the ratio σ∞(P)/σo. X-ray radiation, P = 2 Gy/s, 295 K.

Download (59KB)
5. Fig. 4. Dependence of the logarithm of the relative strength on the absorbed dose during radiation-oxidative degradation of microplastics based on PA-6 fibers. P = 2 Gy/s, T = 295 K.

Download (53KB)

Copyright (c) 2024 Russian Academy of Sciences