Laser Ablation of Styrene–Methacrylate Composites

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Various styrene–methacrylate composites with mineral fillers have been studied as a substrate for the deposition of copper tracks on surfaces after laser ablation. It has been revealed that both insufficient laser heating of the substrate with applied varnish and its overheating have a negative effect on chemical copper plating. The use of crosslinked styrene–methacrylate polymers makes it possible to achieve stable copper plating of the laser-treated surface of the varnish-coated substrate. It has been shown that with an appropriate selection of ablation parameters, finely divided minerals, such as talc, celadonite, aquamarine, shungite, chromia, and iron oxide (ocher), can be used as varnish filler for chemical copper plating of laser-treated parts of the substrate.

Sobre autores

N. Buzin

Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences

Email: 99gridnev@gmail.com
Moscow, 119334 Russia

G. Mukhametova

Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences

Email: 99gridnev@gmail.com
Moscow, 119334 Russia

S. Kholuiskaya

Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences

Email: 99gridnev@gmail.com
Moscow, 119334 Russia

A. Kiselev

Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences

Email: 99gridnev@gmail.com
Moscow, 119334 Russia

V. Kalinichenko

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: 99gridnev@gmail.com
Moscow, 119334 Russia

A. Gridnev

Semenov Federal Research Center Institute of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: 99gridnev@gmail.com
Moscow, 119334 Russia

Bibliografia

  1. Adelaar H. A method for plating a copper interconnection circuit on the surface of a plastic device. Pat. 2267184 EP. 2010.
  2. Heininger N. // J. Microwave. 2012. V. 6. № 1. P. 46.
  3. Huske M., Kickeilhaim J., Muller J., Eber G. // Mater. Sci. 2002. V. 38. № 8. P. 51.
  4. URL: https://www.lpkfusa.com/products/mid/articles_and_technical_papers/ сайт фирмы “LKPF”, 2021 (дата обращения: 23.08.2021).
  5. Goosey M. Laser-activated dielectric material and method for using the same in an electroless deposition process. Pat. 0212632 GB. 2003.
  6. Balzereit S., Proes F., Altstadt V., Emmelmann C. // Mater. Sci. 2018. V. 23. P. 347. doi: 10-1016/j-addma.2018.08.016
  7. Schrauwen B.A.G. Polycarbonate Composition for laser direct structuring. Pat. 3898808A1 EP. 2020.
  8. Yu Z., Wang J.H., Li Y., Li Y. // Polym. Eng. Sci. 2020.V. 60. № 4. P. 860. https://doi.org/10.1002/pen.25345
  9. Kim K., Lee J., Ryua S. Kim J. // RSC Advances. 2018. V. 8. № 18. P. 9933. https://doi.org/10.1039/c8ra00967h
  10. Jiratti T., Mavinkere R.S., Suchart S., Catalin I.P. // Polymers. 2020. V. 12. № 6. P. 1408. https://doi.org/10.3390/polym12061408
  11. Xu H., Zhang J., Feng J., Zhou T. // Ind. Eng. Chem. Res. 2021. V. 60. № 24. P. 8821. https://doi.org/10.1021/acs.iecr.1c01668
  12. Rytlewski P., Jagodzinski B., Karasiewicz I.N., Augustyn P., Kaczor D., Malinowski R., Szablinski K., Mazurkiewicz M., Moraczewski K. // Materials. 2020. V. 13. № 10. P 2224. https://doi.org/10.3390/ma13102224
  13. Zhang J., Zhou T., Wen L., Zhang A. // ACS App. Mater. Inter. 2016. V. 8. № 49. P. 33999. https://doi.org/10.1021/acsami.6b11305
  14. Zhang J., Zhou T., Wen Y. // ACS App. Mater. Inter. 2017. V. 9. № 10. P. 8996. https://doi.org/10.1021/acsami.6b15828
  15. Пивоваров Д.А., Голубчикова Ю.Ю., Ильин А.П. // Изв. Томск. политех. университета // 2012. Т. 321. № 3. С. 11.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (467KB)
3.

Baixar (12KB)
4.

Baixar (794KB)
5.

Baixar (1016KB)

Declaração de direitos autorais © Н.В. Бузин, Г.М. Мухаметова, С.Н. Холуйская, А.В. Киселев, В.Н. Калиниченко, А.А. Гриднев, 2023