Laser ablation of polymers: dynamics analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The variation of the principal force parameters associated with polymethylmethacrylate ablation by means of continuous CO₂ laser radiation was subjected to investigation. The complex parameter, defined as the sum of the target weight and the reactive recoil force of the ablation flux, was measured using a force-measuring device with computer registration and a time resolution of 126.5 ms. The experimental data for the initial interval of 0-2 s were approximated by a model function, which enabled the identification of changes in the target weight and recoil force of the ablation flux during irradiation. The energy efficiency of the process in a low thrust jet engine (Cm = 115 μN/W) has been determined for the moment when the ablation rate reaches the stationary regime. This decreases with the laser irradiation time due to the formation of a crater with a concave surface and an increase in the gas pressure in the ablation chamber. It should be noted that the type of the ablation curve and, consequently, the approximating function for the initial stage of ablation are specific to each polymer and laser beam parameter.

Full Text

Restricted Access

About the authors

E. M. Tolstopyatov

V.A. Belyi Metal-Polymer Research Institute, National Academy of Sciences of Belarus

Author for correspondence.
Email: etolstopy@mail.ru
Belarus, Gomel

L. F. Ivanov

V.A. Belyi Metal-Polymer Research Institute, National Academy of Sciences of Belarus

Email: etolstopy@mail.ru
Belarus, Gomel

P. N. Grakovich

V.A. Belyi Metal-Polymer Research Institute, National Academy of Sciences of Belarus

Email: etolstopy@mail.ru
Belarus, Gomel

L. A. Kalinin

V.A. Belyi Metal-Polymer Research Institute, National Academy of Sciences of Belarus

Email: etolstopy@mail.ru
Belarus, Gomel

S. R. Allayarov

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: sadush@icp.ac.ru
Russian Federation, Chernogolovka

References

  1. Krasovskiy A.M., Tolstopyatov E.M. // Surface. Physics, Chemistry, Mechanics. 1985. № 1. P. 143.
  2. Korshak V.V., Said-Galiev E.E., Nikitin L.N. Gribova I.A. // Dokl. of the USSR Academy of Sciences.1983. V. 269. P. 1119.
  3. Tolstopyatov E.M., Grakovich P.N., Ivanov L.F. // Izv. AN BSSR. Ser. chem. nauk. 1989. № 4. P. 23.
  4. Korshak V.V., Gribova I.A., Said-Galiev E.E. // Mechanics of Composite Mater.1987. № 6. P. 985.
  5. Said-Galiev E.E., Nikitin L.N. // Mechanics of Composite Mater. 1992. № 2. P. 152.
  6. Krasovskiy A.M., Tolstopyatov E.M. Obtaining thin films by polymer atomisation in vacuum. Moscow: Science and Technology, 1989. 181 p.
  7. Tolstopyatov E.M., Ivanov L.F., Grakovich P.N., Krasovsky A.M. // Proc. SPIE. 1998. V. 3343. P. 1010.
  8. Tolstopyatov E.M. // J. Phys. D: Appl. Phys. 2005. V. 38. P. 1993.
  9. Grakovich P.N., Ivanov L.F., Kalinin L.A. // Journal of General Chemistry. 2009. vol.79. P. 626.
  10. Tolstopyatov E.M., Grakovich P.N., Rakhmanov S.K., Vasilkov A.Yu, Nikitin L.N. // Inorganic Materials: Appl. Res. 2012. V. 3. P. 425.
  11. Tolstopyatov E.M., Grakovich P.N., Ivanov L.F., Allayarov S.R., Olkhov Yu. A., Dixon D.A. // J. Rus. Laser Res. 2015. V. 36. P. 485.
  12. Allayarov S.R., Kalinin L.A., Tolstopyatov E.M., Grakovich P.N., Ivanov L.F., Dixon D.A. // J. Rus. Laser Res. 2017, V. 38. P 364.
  13. Allayarov S. R., Tolstopyatov E.M., Dixon D.A., Kalinin L.A., Grakovich P.N., Ivanov L.F., Golodkov O.N. // J. Rus. Laser Res. 2017. V. 38. P 369.
  14. Frolov I.A., Allayarov S.R., Kalinin L.A., Dixon D.A., Tolstopyatov E.M., Grakovich P.N., Ivanov L. F. // J. Rus. Laser Res. 2018. V. 39. P. 98.
  15. Frolov I.A., Allayarov S.R., Kalinin L.A., Bogdanova Y.G., Tolstopyatov E.M., Grakovich P.N., Ivanov L.F., Dremova N.N., Golodkov O.N. // High Energy Chemistry. 2019. V. 53. P. 464.
  16. Allayarov S.R., Confer M.P., Dixon D.A., Rudneva T.N., Kalinin L.A., Tolstopyatov E.M., Golodkov O.N. // Polymer Degradation and Stability. 2020. V. 181. 109331.
  17. Phipps C., Luke J. // Abstr. Book of E-MRS Spring Meeting, Strasbourg, 10–13 June 2003 / The European Research Society. Strasbourg, 2003. H-VIII.2.
  18. Phipps C., Birkan M., Bohn W. et al. // J.Propulsion and Power. 2010. V. 26. P. 609.
  19. Frolov I.A., Allayarov S.R., Tolstopyatov E.M., Utkin A.V., Grakovich P.N., Ivanov L.F., Makarenko V.M. // High Energy Chemistry. 2022. V. 56. P. 64.
  20. Frolov I.A., Allayarov S.R., Kalinin L.A., Tolstopyatov E.M., Grakovich P.N., Ivanov L.F. // High Energy Chemistry. 2022. V. 56. P. 445.
  21. Madorsky S. Thermal decomposition of organic polymers / Transl. from English, ed. by S.R. Rafikov // M.: Mir, 1967. 328 p.
  22. Technology of Thin Films (Reference Book) / Ed. by L. Myssel, R. Glang: Transl. from English, ed. by M.I. Elinson, G.G. Smolko, V. 1. M.: Sov. Radio, 1977. P. 664.
  23. https://webbook.nist.gov/cgi/cbook.cgi?ID=C80626&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Qualitative picture of the intensity distribution of ablation products from a flat surface (a) and from a concave crater (b) when irradiated with a ray with decreasing intensity from the center.

Download (150KB)
3. Fig. 2. The dependence of the readings of the force measuring device on the ablation time of PMMA (×) and the approximating dependence for the initial stage A–B (solid line).

Download (125KB)

Copyright (c) 2024 Russian Academy of Sciences