Comparison of mass spectra characteristics using statistical analysis methods for the case of ionisation of organic molecules by electron impact with different electron energies
- Authors: Silkin S.V.1, Sakharov A.V.1, Pekov S.I.2,3, Eliferov V.A.1, Tkachenko V.G.1, Kolesnik D.V.1, Nikolaev E.N.2, Popov I.A.1,3
-
Affiliations:
- Moscow Institute of Physics and Technology
- Skolkovo Institute of Science and Technology
- Siberian State Medical University
- Issue: Vol 58, No 6 (2024)
- Pages: 472-482
- Section: RADIATION CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0023-1193/article/view/681214
- DOI: https://doi.org/10.31857/S0023119324060071
- EDN: https://elibrary.ru/THOJOH
- ID: 681214
Cite item
Abstract
The sensitivity and accuracy of volatile organic compound (VOC) identification can be enhanced through the manipulation of ionisation energy in electron impact ionisation mass spectrometric gas analysers. This is achieved by modulating the number of ions formed in the ion source. This paper presents a comparison of data obtained by electron impact ionisation at electron energy (EE) values in the range of 25–105 eV for a number of organic substances belonging to different classes of organic compounds. In order to interpret the dynamics of changes in the peak intensities of fragment ions, an analysis was conducted using similarity matrices based on different similarity metrics. This analysis demonstrated the influence of electron energy (EE) on the probability of formation of the main fragment particles of the studied substances, and consequently, on the similarity of the recorded mass spectrum with the reference mass spectrum from the database.
Keywords
Full Text

About the authors
S. V. Silkin
Moscow Institute of Physics and Technology
Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny
A. V. Sakharov
Moscow Institute of Physics and Technology
Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny
S. I. Pekov
Skolkovo Institute of Science and Technology; Siberian State Medical University
Email: e.nikolaev@skoltech.ru
Russian Federation, Skolkovo; Tomsk
V. A. Eliferov
Moscow Institute of Physics and Technology
Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny
V. G. Tkachenko
Moscow Institute of Physics and Technology
Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny
D. V. Kolesnik
Moscow Institute of Physics and Technology
Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny
E. N. Nikolaev
Skolkovo Institute of Science and Technology
Author for correspondence.
Email: e.nikolaev@skoltech.ru
Russian Federation, Skolkovo
I. A. Popov
Moscow Institute of Physics and Technology; Siberian State Medical University
Email: popov.ia@mipt.ru
Russian Federation, Dolgoprudny; Tomsk
References
- McLafferty F.W. A century of progress in molecular mass spectrometry //Annual review of analytical chemistry, 2011. V. 4, P. 1-22.
- Wulfson N. S., Zaikin V.G., Mikaya A.I. Mass-spectrometry of organic compounds // N.S. Wulfson et al. Moscow: Khimiya, 1986. 312 p.
- Field F. H., Franklin J. L. Electron impact phenomena: and the properties of gaseous ions //Academic Press, 2013. V. 1. 564 p.
- Yang, Q., Ji, H., Xu, Z. et al. Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library // Nat Commun, 2023, V. 14. P. 372. https://doi.org/10.1038/s41467-023-39279-7
- Moorthy A.S., Kearsley A.J. (2021). Pattern Similarity Measures Applied to Mass Spectra. In: Cruz M., Parés C., Quintela P. (eds.) Progress in Industrial Mathematics: Success Stories. SEMA SIMAI Springer Series, V. 5. Springer, Cham., 2020. https://doi.org/10.1007/978-3-030-61844-5_4
- Zhvansky E.S., Pekov S.I., Sorokin A.A. et al. Metrics for evaluating the stability and reproducibility of mass spectra // Sci Rep, 2019. V. 9, P. 914. https://doi.org/10.1038/s41598-018-37560-0
- Numpy and Scipy Documentation [Электронный ресурс] / Distance computations (scipy.spatial.distance). URL: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
- Learn Data Science [Электронный ресурс] / Cosine Similarity — LearnDataSci. URL: https://www.learndatasci.com/glossary/cosine-similarity/
- Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques (Third Edition), Elsevier, 2012. https://doi.org/10.1016/C2009-0-61819-5
- Debbie L. Hahs-Vaughn. Foundational methods: descriptive statistics: bivariate and multivariate data (correlations, associations), Editor(s): Robert J Tierney, Fazal Rizvi, Kadriye Ercikan, International Encyclopedia of Education (Fourth Edition), Elsevier, 2023. https://doi.org/10.1016/B978-0-12-818630-5.10084-3.
- M. Greenacre. Correspondence Analysis, Editor(s): Penelope Peterson, Eva Baker, Barry McGaw, International Encyclopedia of Education (Third Edition), Elsevier, 2010. https://doi.org/10.1016/B978-0-08-044894-7.01317-8
- NIST [Electronic resource]/ Manhattan distance. URL: https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
- Xin-She Yang. Data mining techniques, Editor(s): Xin-She Yang, Introduction to Algorithms for Data Mining and Machine Learning, Academic Press, 2019. https://doi.org/10.1016/B978-0-12-817216-2.00013-2
- Glineur A., Beccaria M., Purcaro G. Exploring 20 eV electron impact ionization in gas chromatography-tandem mass spectrometry for the determination of estrogenic compounds //Journal of Chromatography A. 2021. V. 1652. P. 462359.
- Metz T. O. et al. High-resolution separations and improved ion production and transmission in metabolomics //TrAC Trends in Analytical Chemistry. 2008. V. 27 (3). P. 205-214.
- Fialkov A. B. et al. Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes //International journal of mass spectrometry. 2007. V. 260 (1). P. 31-48.
- Klyuev N. A., Brodsky E. S. Modern methods of mass spectrometric analysis of organic compounds //Russian Chemical Journal. 2002. V. 46. №. 4. P. 57-63.
- Honkanen O. еt al. Mass Spectra of Seven Isomeric Hexen-1-ols //Acta Chemica Scandinavica. 1963. V. 17. P. 2051-2054.
Supplementary files
