Comparison of mass spectra characteristics using statistical analysis methods for the case of ionisation of organic molecules by electron impact with different electron energies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sensitivity and accuracy of volatile organic compound (VOC) identification can be enhanced through the manipulation of ionisation energy in electron impact ionisation mass spectrometric gas analysers. This is achieved by modulating the number of ions formed in the ion source. This paper presents a comparison of data obtained by electron impact ionisation at electron energy (EE) values in the range of 25105 eV for a number of organic substances belonging to different classes of organic compounds. In order to interpret the dynamics of changes in the peak intensities of fragment ions, an analysis was conducted using similarity matrices based on different similarity metrics. This analysis demonstrated the influence of electron energy (EE) on the probability of formation of the main fragment particles of the studied substances, and consequently, on the similarity of the recorded mass spectrum with the reference mass spectrum from the database.

Full Text

Restricted Access

About the authors

S. V. Silkin

Moscow Institute of Physics and Technology

Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny

A. V. Sakharov

Moscow Institute of Physics and Technology

Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny

S. I. Pekov

Skolkovo Institute of Science and Technology; Siberian State Medical University

Email: e.nikolaev@skoltech.ru
Russian Federation, Skolkovo; Tomsk

V. A. Eliferov

Moscow Institute of Physics and Technology

Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny

V. G. Tkachenko

Moscow Institute of Physics and Technology

Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny

D. V. Kolesnik

Moscow Institute of Physics and Technology

Email: e.nikolaev@skoltech.ru
Russian Federation, Dolgoprudny

E. N. Nikolaev

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: e.nikolaev@skoltech.ru
Russian Federation, Skolkovo

I. A. Popov

Moscow Institute of Physics and Technology; Siberian State Medical University

Email: popov.ia@mipt.ru
Russian Federation, Dolgoprudny; Tomsk

References

  1. McLafferty F.W. A century of progress in molecular mass spectrometry //Annual review of analytical chemistry, 2011. V. 4, P. 1-22.
  2. Wulfson N. S., Zaikin V.G., Mikaya A.I. Mass-spectrometry of organic compounds // N.S. Wulfson et al. Moscow: Khimiya, 1986. 312 p.
  3. Field F. H., Franklin J. L. Electron impact phenomena: and the properties of gaseous ions //Academic Press, 2013. V. 1. 564 p.
  4. Yang, Q., Ji, H., Xu, Z. et al. Ultra-fast and accurate electron ionization mass spectrum matching for compound identification with million-scale in-silico library // Nat Commun, 2023, V. 14. P. 372. https://doi.org/10.1038/s41467-023-39279-7
  5. Moorthy A.S., Kearsley A.J. (2021). Pattern Similarity Measures Applied to Mass Spectra. In: Cruz M., Parés C., Quintela P. (eds.) Progress in Industrial Mathematics: Success Stories. SEMA SIMAI Springer Series, V. 5. Springer, Cham., 2020. https://doi.org/10.1007/978-3-030-61844-5_4
  6. Zhvansky E.S., Pekov S.I., Sorokin A.A. et al. Metrics for evaluating the stability and reproducibility of mass spectra // Sci Rep, 2019. V. 9, P. 914. https://doi.org/10.1038/s41598-018-37560-0
  7. Numpy and Scipy Documentation [Электронный ресурс] / Distance computations (scipy.spatial.distance). URL: https://docs.scipy.org/doc/scipy/reference/spatial.distance.html
  8. Learn Data Science [Электронный ресурс] / Cosine Similarity — LearnDataSci. URL: https://www.learndatasci.com/glossary/cosine-similarity/
  9. Jiawei Han, Micheline Kamber and Jian Pei. Data Mining: Concepts and Techniques (Third Edition), Elsevier, 2012. https://doi.org/10.1016/C2009-0-61819-5
  10. Debbie L. Hahs-Vaughn. Foundational methods: descriptive statistics: bivariate and multivariate data (correlations, associations), Editor(s): Robert J Tierney, Fazal Rizvi, Kadriye Ercikan, International Encyclopedia of Education (Fourth Edition), Elsevier, 2023. https://doi.org/10.1016/B978-0-12-818630-5.10084-3.
  11. M. Greenacre. Correspondence Analysis, Editor(s): Penelope Peterson, Eva Baker, Barry McGaw, International Encyclopedia of Education (Third Edition), Elsevier, 2010. https://doi.org/10.1016/B978-0-08-044894-7.01317-8
  12. NIST [Electronic resource]/ Manhattan distance. URL: https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
  13. Xin-She Yang. Data mining techniques, Editor(s): Xin-She Yang, Introduction to Algorithms for Data Mining and Machine Learning, Academic Press, 2019. https://doi.org/10.1016/B978-0-12-817216-2.00013-2
  14. Glineur A., Beccaria M., Purcaro G. Exploring 20 eV electron impact ionization in gas chromatography-tandem mass spectrometry for the determination of estrogenic compounds //Journal of Chromatography A. 2021. V. 1652. P. 462359.
  15. Metz T. O. et al. High-resolution separations and improved ion production and transmission in metabolomics //TrAC Trends in Analytical Chemistry. 2008. V. 27 (3). P. 205-214.
  16. Fialkov A. B. et al. Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes //International journal of mass spectrometry. 2007. V. 260 (1). P. 31-48.
  17. Klyuev N. A., Brodsky E. S. Modern methods of mass spectrometric analysis of organic compounds //Russian Chemical Journal. 2002. V. 46. №. 4. P. 57-63.
  18. Honkanen O. еt al. Mass Spectra of Seven Isomeric Hexen-1-ols //Acta Chemica Scandinavica. 1963. V. 17. P. 2051-2054.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. Mass spectra of isopropanol obtained by electron impact ionization. (a) at 70 eV in comparison with the spectrum from the NIST database; (b) at 25 eV in comparison with the spectrum obtained at 70 eV; (c) at 105 eV in comparison with the spectrum obtained at 70 eV.

Download (224KB)
3. Fig. 2. THF mass spectra obtained by electron impact ionization (a) at 70 eV in comparison with the spectrum from the NIST database; (b) at 25 eV in comparison with the spectrum obtained at 70 eV; (c) at 45 eV in comparison with the spectrum obtained at 70 eV; (d) at 105 eV in comparison with the spectrum obtained at 70 eV.

Download (238KB)
4. Fig. 3. Mass spectra of ethyl acetate obtained by electron impact ionization (a) at 70 eV in comparison with the spectrum from the NIST database; (b) at 90 eV in comparison with the spectrum obtained at 70 eV.

Download (136KB)
5. 4. Ionization efficiency curves for the main fragmentary ions (a) n-hexane, (b) 2,2,4-trimethylpentane.

Download (154KB)
6. 5. Ionization efficiency curves for the main fragmentary ions (a) ethylformate, (b) butyl acetate.

Download (145KB)
7. Fig. 6a. The matrix

Download (647KB)
8. Fig. 7. Matrix of cosine measures

Download (502KB)

Copyright (c) 2024 Russian Academy of Sciences