Barrier discharge conversion of gaseous olefins
- Autores: Ryabov A.Y.1, Kudryashov S.V.1
-
Afiliações:
- Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
- Edição: Volume 58, Nº 6 (2024)
- Páginas: 483-488
- Seção: PLASMA CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0023-1193/article/view/681215
- DOI: https://doi.org/10.31857/S0023119324060081
- EDN: https://elibrary.ru/THKSNK
- ID: 681215
Citar
Resumo
The oxidation of olefins С2–С4 in a barrier discharge in the presence of water has been investigated, with the formation of oxygen-containing compounds and various hydrocarbons С1–С5+ of limited and unsaturated structure being observed. The initial olefin’s molecular weight and structure have been found to exert a significant influence on the direction of the reaction. In the ethylene-propylene-butylene series, the proportion of oxygen-containing compounds increases from 28.1, 74.3 and 66.7 wt%, respectively. The oxidation of isobutene isomasalic aldehyde and acetone, with a content of 53 and 21 wt. %, respectively, primarily yields the formation of these compounds. In the case of the oxidation of butene-1 and butene-2, the predominant products are butanol-2, with a yield of up to 26 wt. %.
Palavras-chave
Texto integral

Sobre autores
A. Ryabov
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: a.y.ryabov@yandex.ru
Rússia, Tomsk
S. Kudryashov
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
Email: a.y.ryabov@yandex.ru
Rússia, Tomsk
Bibliografia
- Samoilovich V.G., Gibalov V.I., Kozlov K.V. // Physical Chemistry of Barrier Discharge. M: Moscow state university. 1989. 174 p.
- Suttikul T., Yaowapong-aree S., Sekiguchi H. et al. // Chem. Eng. Process. 2013. V. 70. P. 222–232.
- Tsolas N., Yetter R.A., Adamovich I.V. // Combust. Flame. 2017. V. 176. P. 462–478.
- Suttikul T., Tongurai C., Sekiguchi H., Chavadej S. // Plasma. Chem. Plasma Process. 2012. V. 32. P. 1169–1188.
- Sreethawong T., Suwannabart T., Chavadej S. // Plasma Chem. Plasma Process. 2008. V. 28. P. 629–642.
- Tiwari S., Caiola A., Bai X. et al. // Plasma Chem. Plasma Process. 2020. V. 40 P. 1–23.
- Xiong H., Zhu X., Lu S. et al. // Sci. Total Environ. 2021. V. 788. P. 147675.
- Lin H., Guan B., Cheng Q., Huang Z. // Energy Fuels. 2010. V. 24. P. 5418–5425.
- Kudryashov S.V., Ochered’ko A.N., Ryabov A.Yu., Shchyogoleva G. S. // Plasma Chem. Plasma Process. 2011. V. 31. P. 649–661.
- Ryabov A. Yu., Kudryashov S. V., Ochered’ko A. N., Dankovtsev G.O. // Chem. Sustain. Dev. 2021. V. 29. P. 180–184.
- Ryabov A.Yu., Kudryashov S.V., Ocheredko A.N. // High Energy Chemistry. 2022. V. 56. № 3. P. 245–250.
- Ryabov A.Yu., Kudryashov S.V. // High Energy Chemistry. 2023. V. 57. № 4. P. 327–331.
- Kudryashov S. Ryabov A. Shchyogoleva G. // J. Phys. D: Appl. Phys. 2016. V. 49. P. 025205.
- Fridman A. // Plasma Chemistry. NY: Cembridge University Press, 2012. 979 p.
- Janev R.K., Reiter D. // Physics of Plasmas. 2004. V. 11. P. 780.
- Cvetanovic R.J. // J. Phys. Chem. Ref. Data. 1987. V. 16. P, 261.
- Caracciolo A., Vanuzzo G., Balucani N. et al. // J. Phys. Chem. A. 2019. V. 123. P. 9934–9956.
Arquivos suplementares
