Simulation of Acetylene Formation from Methane in a Plasma Jet

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This work is devoted to the numerical modeling of the reaction of methane conversion to acetylene under plasma-jet pyrolysis conditions and a comparison of the obtained results with the available experimental data. The calculations were performed within the framework of the ideal plug-flow reactor model for atmospheric pressure. The analysis of the main processes of methane decomposition and acetylene formation was carried out in cases where either hydrogen or methane was used as a plasma-forming gas. The results of calculations of the main products of methane decomposition (hydrogen and acetylene) agree quite well with the experimental data.

全文:

受限制的访问

作者简介

I. Bilera

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: lebedev@ips.ac.ru
俄罗斯联邦, Moscow

Yu. Lebedev

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lebedev@ips.ac.ru
俄罗斯联邦, Moscow

A. Titov

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: lebedev@ips.ac.ru
俄罗斯联邦, Moscow

I. Epstein

A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences

Email: lebedev@ips.ac.ru
俄罗斯联邦, Moscow

参考

  1. Antonov V.N., Lapidus A.S. Acetylene production. M.: Chemistry, 1970. 416 р.
  2. Temkin O.N., Shestakov G.K., Treger Yu.A. Acetylene: Chemistry. Mechanisms of reactions. Technology. M.: Chemistry, 1991. 416 p.
  3. Pässler P., Hefner W., Buckl K. et al. Acetylene. In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co, 2008; https://doi.org/10.1002/14356007.a01 097.pub3
  4. Shlyapin D.A., Afonasenko T.N., Glyzdova D.V. et al. // Catalysis in Industry, 2022. V. 14. № 3. P. 251.
  5. Bedenko S.P., Dement’ev K.I., Maximov A.L. // Petroleum Chemistry. 2022. V. 62. № 9. P. 989.
  6. Arutyunov V.S., Savchenko V.I., Sedov I.V., Nikitin A.V. // Catalysis in Industry. 2022. V. 14. № 1. P. 1.
  7. Maretina I.A. // Russ. J. Appl. Chem. 1996. V. 69. № 3. P. 311.
  8. Maretina I.A., Trofimow B.A. // Russ. Chem. Rev. 2000. V. 69. № 7. P. 591.
  9. Slovetskii D.I., Mankelevich Yu.A., Slovetskii S.D., Rakhimova T.V. // High Energy Chemistry. 2002. V. 36. № 1. P. 44.
  10. Kinetics and thermodynamics of chemical reactions in low-temperature plasma. Ed. by L.S. Polak. M.: Nauka, 1965. 255 p.
  11. Bilera I.V., Lebedev Y.A. // Petroleum chemistry. 2022. V. 62. № 4. P. 329.
  12. Dors M., Nowakowska H., Jasinski M., Mizeraczyk J. // Plasma Chem. Plasma Process. 2014. V. 34. № 2. P. 313.
  13. Hughes K.J., Turanyi T., Clague A.R., Pilling M.J. // Int. J. Chem. Kinet. 2001. V. 33. № 9. P. 513.
  14. Cheng Y., Li T., Rehmet C. et al. // Chem. Eng. J. 2017. V. 315. P. 324.
  15. An H., Cheng Y., Li T., Cheng Y. // Fuel Proc. Technol. 2018. V. 172. P. 195.
  16. Wang H., You X., Joshi A.V. et L. Law, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/USC_Mech_II.htm, May 2007.
  17. Appel J., Bockhorn H., Frenklach M. // Comb. Flame. 2000. V. 121. P. 122.
  18. Ma J., Su B., Wen G. et al. // Int. J. Hydrogen Energy. 2016. V. 41. № 48. P. 22689.
  19. Marinov N.M., Pitz W.J., Westbrook C.K. et al. // Comb. Flame. 1998. V. 114. № 1–2. P. 192–213.
  20. Holmen A., Rokstad O.A., Solbakken A. // Ind. Eng. Chem. Process Des. Dev. 1976. V. 15. № 3. P. 439.
  21. Zhang H., Wang W., Li X. et al. // Chem. Eng. J. 2018. V. 345. P. 67.
  22. Heijkers S., Aghaei M., Bogaerts A. // J. Phys. Chem. C. 2020. V. 124. № 13. P. 7016.
  23. Ravasio S., Cavallotti C. // Chem. Eng. Sci. 2012. V. 84. P. 580.
  24. Agafonov G.L., Smirnov V.N., Vlasov P.A. // Proc. Combust. Inst. 2011. V. 33. № 1. P. 625.
  25. Shao C., Kukkadapu G., Wagnon S.W. et al. // Comb. Flame. 2020. V. 219. P. 312.
  26. Kozlov G.I., Khudyakov G.N., Kobzev Yu.N. // Petroleum Chem. U.S.S.R. 1967. V. 7. № 1. P. 83.
  27. Kobzev Yu.N., Kozlov G.I., Khudyakov G.N. // High Energy Chem. 1970. T. 4. No. 6. P. 519.
  28. Epstein I.L., Lebedev Yu.A., Tatarinov A.V., Bilera I.V. // J. Phys. D: Appl. Phys. 2018. V. 51. 214007.
  29. GRI-Mech 3.0. http://combustion.berkeley.edu/gri-mech/
  30. Wang H., Frenklach M. // Comb. Flame. 1997. V. 110. P. 173
  31. Mehl M., Pitz W.J., Westbrook C.K., Curran H.J. // Proc. Combust. Inst. 2011. V. 33. P. 193.
  32. Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. // Comb. Flame. 1998. V. 114. № 1–2. P. 149.
  33. Merkulov A.A., Ovsyannikov A.A., Polak L.S. et al. // Plasma Chem. Plasma Process. 1989. V. 9. № 1. P. 95.
  34. Merkulov A.A., Ovsyannikov A.A., Polak L.S. et al. // Plasma Chem. Plasma Process. 1989. V. 9. № 1. P. 105.
  35. Emanuel N.M., Knorre D.G. Course of chemical kinetics. M.: Vysshaya shkola, 1974, 399 p.
  36. Frank-Kamenetsky D.A. Diffusion and heat transfer in chemical kinetics. M.: Nauka, 1987.
  37. Lebedev Yu.A., Tatarinov A.V., Epstein I.L. // Plasma Chem. Plasma Processing. 2019. V. 39. № 4. P. 787.
  38. Frenklach M., Wang H. // Proc. Comb. Inst. 1991.V. 23. P. 1559.
  39. Shterenberg A.M. // Vestnik Samarsk. Univer. Phys.-Math. Ser. 1998. P. 55 (in Russian).
  40. Winters H. // J. Chem. Phys. 1975. V. 63. P. 3462.
  41. Cacciatore M., Capitelli M., Dilonardo M. // Chem. Phys. 1978. V. 34. P. 193.
  42. Morgan Database (2014). www.lxcat.net. Retrieved 29 Aug 2014
  43. Janev R., Reiter D. // Phys. Plasmas. 2004. V. 11. P. 780–829.
  44. Starikovsky A., Aleksandrov N. // Progr. Energy Combust. Science. 2013. V. 39. P. 61.
  45. Wang W., Snoeckx R., Zhang X. et al. // J. Physical Chemistry C. 2018. V. 122. № 16. P. 8704.
  46. Ovsyannikov A.A. Chemical reactions in turbulent flows of low-temperature plasma in the collected papers “Low-temperature plasma 3”. Ed. by L.S. Polak and Yu.A. Lebedev. Novosibirsk: Nauka, 1981.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of plasma chemical reactor. 1 - plasmatron, 2 - reactor, 3 - quenching zone, 4 - hydrogen or methane (natural gas) supply, 5 - additional methane (natural gas) supply, 6 - water quenching, 7 - flow of reaction products into the separation unit

下载 (64KB)
3. Fig. 2. Mechanism of soot particle nucleation molecule formation

下载 (144KB)
4. Fig. 3. Dependence of gas temperature (a), volume concentrations of methane (b), molecular hydrogen (c) and acetylene (d) on gas residence time in the reactor at different values of cold methane flow rate F2 for the case F1 = 50 l/min, T1 = 3500 K, T2 = 300 K, p = 1 atm. F2 /F1 = 1.0 (1), F2 /F1 = 1.2 (2), F2 /F1 = 1.4 (3), F2/F1 = 1.6 (4), F2/F1 = 2.0 (5)

下载 (421KB)
5. Fig. 4. Dependence of experimental [27] (symbols and thin solid lines) and calculated (thick solid lines) values of concentrations of methane and its main decay products on the ratio of cold and hot methane flows for the case F1 = 50 l/min, T1 = 3500 K, T2 = 300 K, p = 1 atm. Thick dashed lines - calculation taking into account mixing of cold and hot streams. 1, 2 - N2; 3, 4 - C2H2; 5, 6, 11 - CH4; 7, 8, 12 - C4H2; 9, 10, 13 - C4H4

下载 (117KB)
6. Fig. 5. Dependence of soot yield on gas residence time in the reactor at different values of cold methane flow rate F2 for the case M1 = 50 l/min, T1 = 3500 K, T2 = 300 K, p = 1 atm. F2/F1 = 1.0 (1), F2/F1 = 1.2 (2), F2/F1 = 1.4 (3), F2/F1 = 1.6 (4), F2/F1 = 2.0 (5)

下载 (107KB)
7. Fig. 6. Dependence of experimental [26] (symbols and thin solid lines) and calculated (thick solid lines) yields of main components: (a) on methane volume flow rate at hydrogen flow rate of 50 l/min, (b) on hydrogen volume flow rate at methane flow rate of 80 l/min. 1, 2 - H2; 3, 4 - C2H2; 5, 6 - CH4; 7, 8 - C2H4

下载 (199KB)
8. Fig. 7. Time dependence of methane content and its pyrolysis products for optimal conditions of Table 2. 1 - CN4, 2 - N2, 3 - C2N4, 4 - C2N2

下载 (95KB)

版权所有 © Russian Academy of Sciences, 2024