Microfluidic synthesis of magnetite nanoparticles and its comparison with synthesis in a batch reactor

Cover Page
  • Authors: Nikiforov A.I.1,2, Lazareva E.O.1,2, Edemskaya E.V.1,2, Semenov V.G.3, Gareev K.G.1,2, Korolev D.V.1,4
  • Affiliations:
    1. Федеральное государственное бюджетное учреждение “Национальный медицинский исследовательский центр им. В. А. Алмазова” Минздрава России
    2. Федеральное государственное автономное образовательное учреждение высшего образования “Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)”
    3. Санкт-Петербургский государственный Университет
    4. Федеральное государственное бюджетное образовательное учреждение высшего образования “Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова” Минздрава России
  • Issue: Vol 86, No 4 (2024)
  • Pages: 469-481
  • Section: Articles
  • Submitted: 27.02.2025
  • Published: 21.10.2024
  • URL: https://kld-journal.fedlab.ru/0023-2912/article/view/670866
  • DOI: https://doi.org/10.31857/S0023291224040062
  • EDN: https://elibrary.ru/bzyzrf
  • ID: 670866

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work discusses the synthesis of magnetite nanoparticles using the microfluidic method. The main characteristics of the resulting nanoparticles were investigated, including chemical composition, size distribution, saturation mass magnetization, and coercive force. To assess the possibility of using nanoparticles for medical and biological purposes, the hemolytic activity of a suspension of magnetite nanoparticles was calculated.

Full Text

Restricted Access

About the authors

A. I. Nikiforov

Федеральное государственное бюджетное учреждение “Национальный медицинский исследовательский центр им. В. А. Алмазова” Минздрава России; Федеральное государственное автономное образовательное учреждение высшего образования “Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)”

Email: dimon@cardioprotect.spb.ru
Russian Federation, пр. Пархоменко, д. 15, лит. Б, Санкт-Петербург, 194156; ул. Профессора Попова, д. 5, лит. Ф, Санкт-Петербург, 197022

E. O. Lazareva

Федеральное государственное бюджетное учреждение “Национальный медицинский исследовательский центр им. В. А. Алмазова” Минздрава России; Федеральное государственное автономное образовательное учреждение высшего образования “Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)”

Email: dimon@cardioprotect.spb.ru
Russian Federation, пр. Пархоменко, д. 15, лит. Б, Санкт-Петербург, 194156; ул. Профессора Попова, д. 5, лит. Ф, Санкт-Петербург, 197022

E. V. Edemskaya

Федеральное государственное бюджетное учреждение “Национальный медицинский исследовательский центр им. В. А. Алмазова” Минздрава России; Федеральное государственное автономное образовательное учреждение высшего образования “Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)”

Email: dimon@cardioprotect.spb.ru
Russian Federation, пр. Пархоменко, д. 15, лит. Б, Санкт-Петербург, 194156; ул. Профессора Попова, д. 5, лит. Ф, Санкт-Петербург, 197022

V. G. Semenov

Санкт-Петербургский государственный Университет

Email: dimon@cardioprotect.spb.ru

Институт химии

Russian Federation, Университетский пр., д. 26, Петергоф, Санкт-Петербург, 198504

K. G. Gareev

Федеральное государственное бюджетное учреждение “Национальный медицинский исследовательский центр им. В. А. Алмазова” Минздрава России; Федеральное государственное автономное образовательное учреждение высшего образования “Санкт-Петербургский государственный электротехнический университет “ЛЭТИ” им. В.И. Ульянова (Ленина)”

Email: dimon@cardioprotect.spb.ru
Russian Federation, пр. Пархоменко, д. 15, лит. Б, Санкт-Петербург, 194156; ул. Профессора Попова, д. 5, лит. Ф, Санкт-Петербург, 197022

D. V. Korolev

Федеральное государственное бюджетное учреждение “Национальный медицинский исследовательский центр им. В. А. Алмазова” Минздрава России; Федеральное государственное бюджетное образовательное учреждение высшего образования “Первый Санкт-Петербургский государственный медицинский университет им. И.П. Павлова” Минздрава России

Author for correspondence.
Email: dimon@cardioprotect.spb.ru
Russian Federation, пр. Пархоменко, д. 15, лит. Б, Санкт-Петербург, 194156; ул. Льва Толстого, д. 6-8, Санкт-Петербург, 197022

References

  1. Park K. Facing the truth about nanotechnology in drug delivery // ACS Nano. 2013. V. 7. № 9. P. 7442–7447. https://doi.org/10.1021/nn404501g
  2. Liu D., Zhang H., Fontana F. et al. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines // Adv. Drug Deliv. Rev. 2018. V. 128. P. 54–83. https://doi.org/10.1016/j.addr.2017.08.003
  3. Juliano R. Nanomedicine: Is the wave cresting? // Nat. Rev. Drug Discov. 2013. V. 12. № 3. P. 171–172. https://doi.org/10.1038/nrd3958
  4. Liu D., Zhang H., Fontana F. et al. Microfluidic-assisted fabrication of carriers for controlled drug delivery // Lab. Chip. 2017. V. 17. № 11. P. 1856–1883. https://doi.org/10.1039/c7lc00242d.
  5. Makarshin L.L., Pai Z.P., Parmon V.N. Microchannel systems for fine organic synthesis // Russ. Chem. Rev. 2016. V. 85. № 2. P. 139–155. https://doi.org/10.1070/RCR4484
  6. Martins J.P., Torrieri G., Santos H.A. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems // Expert Opin Drug Deliv. 2018. V. 15. № 5. P. 469–479. https://doi.org/10.1080/17425247.2018.1446936
  7. Song Y., Hormes J., Kumar C.S. Microfluidic synthesis of nanomaterials // Small. 2008. V. 4. № 6. P. 698–711. https://doi.org/10.1002/smll.200701029
  8. Gonçalves I.M., Carvalho V., Rodrigues R.O. et al. Organ-on-a-Chip Platforms for Drug Screening and delivery in tumor cells: A systematic review // Cancers. 2022. V. 14. № 4. P. 935. https://doi.org/10.3390/cancers14040935
  9. El-Housiny S., Shams Eldeen M.A., El-Attar Y.A. et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study // Drug Deliv. 2018. V. 25. № 1. P. 78–90. https://doi.org/10.1080/10717544.2017.1413444
  10. Millstone J.E., Kavulak D.F., Woo C.H. et al. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles // Langmuir. 2010. V. 26. № 16. P. 13056–13061. https://doi.org/10.1021/la1022938
  11. Arroyo G.V., Madrid A.T., Gavilanes A.F. et al. Green synthesis of silver nanoparticles for application in cosmetics // J. Environ. Sci. Health. Part A. 2020. V. 55. № 11. P. 1304–1320. https://doi.org/10.1080/10934529.2020.1790953
  12. Gao Y., Wu Y., Lu H. et al. CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency // Nano Energy. 2019. V. 59. P. 517–526. https://doi.org/10.1016/j.nanoen.2019.02.070.
  13. Lin Ch.H., Lee G.B, Lin Y.H., Chang G.L. A fast prototyping process for fabrication of microfluidic systems on soda-lime glass // J. Micromech. Microeng. 2000. V. 11. P. 726. https://doi.org/10.1088/0960-1317/11/6/316
  14. van Poll M.L., Zhou F., Ramstedt M. et al. A self-assembly approach to chemical micropatterning of poly(dimethylsiloxane) // Angew. Chem. Int. Ed. 2007. V. 46. № 35. P. 6634–6637. https://doi.org/10.1002/anie.200702286
  15. Berthier E., Young E.W., Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia // Lab Chip. 2012. V. 12. № 7. P. 1224–1237. https://doi.org/10.1039/c2lc20982a
  16. Merkel T.C., Bondar V.I., Nagai K. et al. Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) // Journal of Polymer Science Part B. 2000. V. 38. № 3. P. 415–434. https://doi.org/10.1002/(SICI)1099-0488(20000201) 38:3<415::AID-POLB8>3.0.CO;2-Z
  17. Kuddannaya S., Bao J., Zhang Y. Enhanced in vitro biocompatibility of chemically modified poly(dimethylsiloxane) surfaces for stable adhesion and long-term investigation of brain cerebral cortex cells // ACS Appl. Mater. Interfaces. 2015. V. 7. № 45. P. 25529–25538. https://doi.org/10.1021/acsami.5b09032
  18. Cho H., Lee D., Hong S. et al. Surface modification of ZrO2 nanoparticles with TEOS to prepare transparent ZrO2@SiO2-PDMS nanocomposite films with adjustable refractive indices // Nanomaterials. 2022. V. 12. № 14. P. 2328. https://doi.org/10.3390/nano12142328
  19. Johnston I.D., Tracey M.C., Davis J.B., Tan C. K.L. Micro throttle pump employing displacement amplification in an elastomeric substrate // J. Micromech. Microeng. 2005. V. 15. P. 1831. https://doi.org/10.1088/0960-1317/15/10/007
  20. Dardouri M., Bettencourt A., Martin V. et al. Using plasma-mediated covalent functionalization of rhamnolipids on polydimethylsiloxane towards the antimicrobial improvement of catheter surfaces // Biomater. Adv. 2022. V. 134. P. 112563. https://doi.org/10.1016/j.msec.2021.112563
  21. Kumar R., Kumar Sahani A. Role of superhydrophobic coatings in biomedical applications // Materials Today: Proceedings. 2021. V. 45. P. 5655–5659. https://doi.org/10.1016/j.matpr.2021.02.457
  22. Wu X., Kim S.H., Ji C.H., Allen M.G. A solid hydraulically amplified piezoelectric microvalve // J. Micromech. Microeng. 2011. V. 21. P. 095003. https://doi.org/10.1088/0960-1317/21/9/095003
  23. Bozukova D., Pagnoulle C, Jérôme R, Jérôme C. Polymers in modern ophthalmic implants—Historical background and recent advances // Materials Science and Engineering: R: Reports. 2010. V. 69. № 6. P. 63–83. https://doi.org/10.1016/j.mser.2010.05.002
  24. Chen W., Lam R. H., Fu J. Photolithographic surface micromachining of polydimethylsiloxane (PDMS) // Lab Chip. 2012. V. 12. № 2. P. 391–395. https://doi.org/10.1039/c1lc20721k
  25. Weibel D.B., Diluzio W.R., Whitesides G.M. Microfabrication meets microbiology // Nat. Rev. Microbiol. 2007. V. 5. № 3. P. 209–218. https://doi.org/10.1038/nrmicro1616
  26. Kulkarni M.B., Goel S. Microfluidic devices for synthesizing nanomaterials—A review //Nano Express. 2020. V. 1. № 3. P. 032004. https://doi.org/10.1088/2632-959X/abcca6
  27. Kumar K., Nightingale A.M., Krishnadasan S.H. et al. Direct synthesis of dextran-coated superparamagnetic iron oxide nanoparticles in a capillary-based droplet reactor // J. Mater. Chem. 2012. V. 22. № 11. P. 4704–4708. https://doi.org/10.1039/c2jm30257h
  28. Toropova Y.G., Golovkin A.S., Malashicheva A.B. et al. In vitro toxicity of FemOn, FemOn-SiO2 composite, and SiO2-FemOn core-shell magnetic nanoparticles // Int. J. Nanomedicine. 2017. V. 12. P. 593–603. https://doi.org/10.2147/IJN.S122580
  29. Ivanov S., Trachevskii V., Stolyarova N., Zozulya L.A. Plasmochemical modification of polymer surfaces // Russian Journal of Applied Chemistry. 2006. V. 79. P. 445–447. https://doi.org/10.1134/S1070427206030220
  30. Kim D.N.H., Kim K.T., Kim C. et al. Soft lithography fabrication of index-matched microfluidic devices for reducing artifacts in fluorescence and quantitative phase imaging // Microfluid Nanofluidics. 2018. V. 22. № 1. P. 2. https://doi.org/10.1007/s10404-017-2023-3
  31. Costa P.F., Albers H.J., Linssen J.E.A. et al. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data // Lab Chip. 2017. V. 17. № 16. P. 2785–2792. https://doi.org/10.1039/c7lc00202e
  32. Prabhakar A., Agrawal M., Mishra N. et al. Cost-effective smart microfluidic device with immobilized silver nanoparticles and embedded UV-light sources for synergistic water disinfection effects // RSC Adv. 2020. V. 10. № 30. P. 17479–17485. https://doi.org/10.1039/d0ra00076k.
  33. Lopez C., Oza G., Casanova-M. J. et al. A Proposal to Develop a Microfluidic Platform with GMR Sensors and the Use of Magnetic Nanoparticles in Order to Detect Cancerous Cells // Preliminary experimentation. 2019 Global Medical Engineering Physics Exchanges/ Pan American Health Care Exchanges (GMEPE/PAHCE). Buenos Aires. Argentina. 2019. P. 1–5. https://doi.org/10.1109/GMEPE-PAHCE.2019.8717341
  34. Kharitonskii P., Kamzin A., Gareev K. et al. Magnetic granulometry and Mössbauer spectroscopy of FemOn–SiO2 colloidal nanoparticles // J. Magn. Magn. Mater. 2018. V. 461. P. 30–36. https://doi.org/10.1016/j.jmmm.2018.04.044
  35. Kuzmann E., Nagy S., Vértes A. Critical review of analytical applications of Mössbauer spectroscopy illustrated by mineralogical and geological examples (IUPAC Technical Report) // Pure and Applied Chemistry. 2003. V. 75. № 6. P. 801–858. https://doi.org/10.1351/pac200375060801
  36. Суздалев И.П. Электрические и магнитные переходы в нанокластерах и наноструктурах. Москва: URSS: КРАСАНД, 2012. 474 с
  37. Gareev K.G. Diversity of iron oxides: Mechanisms of formation, physical properties and applications // Magnetochemistry. 2023. V. 9. № 5. P. 119. https://doi.org/10.3390/magnetochemistry9050119
  38. Mehta R.V., Upadhyay R.V., Dasannacharya B.A. et al. Magnetic properties of laboratory synthesized magnetic fluid and their temperature dependence // J. Magn. Magn. Mater. 1994. V. 132. № 1–3. P. 153–158. https://doi.org/10.1016/0304-8853(94)90309-3
  39. Kharitonskii P.V., Gareev K.G., Ionin S.A. et al. Microstructure and magnetic state of Fe3O4-SiO2 colloidal particles // Journal of Magnetics. 2015. V. 20. № 3. P. 221–228. https://doi.org/10.4283/JMAG.2015.20.3.221
  40. Thu V.T., Mai A.N., Van Trung H. et al. Fabrication of PDMS-based microfluidic devices: Application for synthesis of magnetic nanoparticles // Journal of Electronic Materials. 2016. V. 45. P. 2576–2581. https://doi.org/10.1007/s11664-016-4424-6
  41. Bemetz J., Wegemann A., Saatchi K. et al. Microfluidic-Based Synthesis of Magnetic nanoparticles coupled with miniaturized NMR for online relaxation studies // Anal. Chem. 2018. V. 90. № 16. P. 9975–9982. https://doi.org/10.1021/acs.analchem.8b02374
  42. Fuentes O.P., Cruz J.C., Mignard E. et al. Life cycle assessment of magnetite production using microfluidic devices: Moving from the laboratory to industrial scale // ACS Sustainable Chemistry & Engineering. 2023. V. 11. № 18. P. 6932–6943. https://doi.org/10.1021/acssuschemeng.2c06875
  43. Zou L., Huang B., Zheng X. et al. Microfluidic synthesis of magnetic nanoparticles in droplet-based microreactors // Materials Chemistry and Physics. 2021. V. 276. P. 125384. https://doi.org/10.1016/j.matchemphys.2021.125384
  44. Chircov C., Dumitru I.A., Vasile B.S. et al. Microfluidic synthesis of magnetite nanoparticles for the controlled release of antibiotics // Pharmaceutics. 2023. V. 15. № 9. P. 2215. https://doi.org/10.3390/pharmaceutics15092215

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Microfluidic synthesis of MNPs. Schematic diagram of the MNP synthesis (a) and experimental setup (b): oil-free compressor (1), input pressure sensor (2), pressure regulators in the dispenser channels (3–6); output pressure sensors in the channels (7–10), microfluidic chip (11); microcontroller (12); microscope (13); personal computer (14).

Download (15KB)
3. Fig. 2. MFC with T-shaped topology during MNC synthesis: initial contamination (a), complete filling (b), working topology (c).

Download (36KB)
4. Fig. 3. Morphology and composition of MNPs: TEM images of a MNP sample (a), size distribution of MNPs (b), X-ray diffraction patterns of MNP samples (c, d), obtained in OR (c), obtained in MFC (d).

Download (72KB)
5. Fig. 4. NGR spectra: crystalline magnetite (a), MNPs obtained in OR (b, c), MNPs obtained in MFC (d, d), measurements in a magnetic field (c, d), paramagnetic component (

Download (102KB)
6. Fig. 5. Static magnetization reversal curve of the magnetic field: dependence of the specific magnetic moment (M) on the field strength (H); general view (a) and in the region of weak fields (b)

Download (30KB)

Copyright (c) 2024 Russian Academy of Sciences