Оптимизация траекторий с малой тягой в переменных Кустаанхеймо–Штифеля

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе рассматривается регуляризация уравнений движения космического аппарата преобразованием Кустаанхеймо — Штифеля для координат и Сундмана для времени в задаче поиска оптимальной траектории межпланетного перелета с двигателем малой тяги. Из принципа максимума Понтрягина находится оптимальное управление вектором тяги при условии ограниченной мощности двигателя. Задача перелета Земля — Марс решается в регулярных переменных. Проводится сравнение найденных траекторий с траекториями, полученными методом продолжения по параметру, а также исследуется чувствительность решений краевой задачи принципа максимума в декартовых и регулярных переменных.

Full Text

Restricted Access

About the authors

К. Р. Корнеев

Институт прикладной математики им. М. В. Келдыша РАН

Author for correspondence.
Email: kirill_rnd@mail.ru
Russian Federation, Москва

С. П. Трофимов

Институт прикладной математики им. М. В. Келдыша РАН

Email: kirill_rnd@mail.ru
Russian Federation, Москва

References

  1. Улыбышев Ю. П. Обзор методов оптимизации траекторий космических аппаратов с использованием дискретных множеств псевдоимпульсов // Космическая техника и технологии. 2016. Т. 15. № 4. С. 67–79.
  2. Gergaud J., Haberkorn T. Homotopy method for minimum consumption orbit transfer problem // ESAIM: Control, Optimisation and Calculus of Variations. 2006. V. 12. Iss. 2. P. 294–310.
  3. Haberkorn T., Martinon P., Gergaud J. Low thrust minimum-fuel orbital transfer: a homotopic approach // J. Guidance, Control, and Dynamics. 2004. V. 27. Iss. 6. P. 1046–1060.
  4. Mingotti G., Topputo F., Bernelli-Zazzera F. A method to design sun-perturbed earth-to-moon low-thrust transfers with ballistic capture // Proc. XIX Congresso nazionale AIDAA. 2007. V. 17. Art.ID. 21.
  5. Pontryagin L.S., Boltyanskii V. G., Gamkrelidze R. V. et al. Mathematical theory of optimal processes. New York–London: Interscience Publishers John Wiley & Sons, Inc., 1962. 360 p.
  6. Petukhov V. G. Optimal multi-orbit trajectories for inserting a low-thrust spacecraft to a high elliptic orbit // Cosmic Research. 2009. V. 47. Iss. 3. P. 243–250.
  7. Petukhov V. G. Optimization of multi-orbit transfers between noncoplanar elliptic orbits // Cosmic Research. 2004. V. 42. Iss. 3. P. 250–268.
  8. Petukhov V. G. Method of continuation for optimization of interplanetary low-thrust trajectories // Cosmic Research. 2012. V. 50. Iss. 3. P. 249–261.
  9. Petukhov V. G. Optimization of interplanetary trajectories for spacecraft with ideally regulated engines using the continuation method // Cosmic Research. 2008. V. 46. Iss. 3. P. 219–232.
  10. Pérez-Palau D., Epenoy R. Fuel optimization for low-thrust Earth–Moon transfer via indirect optimal control // Celestial Mechanics and Dynamical Astronomy. 2018. V. 130. Iss. 2. Art.ID. 21.
  11. Pan B., Pan X., Zhang S. A new probability-one homotopy method for solving minimum-time low-thrust orbital transfer problems // Astrophysics and Space Science. 2018. V. 363. Iss. 9.
  12. Pan B., Lu P., Pan X. et al. Double-homotopy method for solving optimal control problems // Journal of Guidance, Control, and Dynamics. American Institute of Aeronautics and Astronautics. 2016. V. 39. Iss. 8. P. 1706–1720.
  13. Jiang F., Baoyin H., Li J. Practical techniques for low-thrust trajectory optimization with homotopic approach // J. Guidance, Control, and Dynamics. 2012. V. 35. Iss. 1. P. 245–258.
  14. Zhang C., Topputo F., Bernelli-Zazzera F. et al. Low-thrust minimum-fuel optimization in the circular restricted three-body problem // J. Guidance, Control, and Dynamics. American Institute of Aeronautics and Astronautics. 2015. V. 38. Iss. 8. P. 1501–1510.
  15. Taheri E., Kolmanovsky I., Atkins E. Enhanced smoothing technique for indirect optimization of minimum-fuel low-thrust trajectories // J. Guidance, Control, and Dynamics. American Institute of Aeronautics and Astronautics. 2016. V. 39. Iss. 11. P. 2500–2511.
  16. Taheri E., Junkins J. L. Generic smoothing for optimal bang-off-bang spacecraft maneuvers // J. Guidance, Control, and Dynamics. American Institute of Aeronautics and Astronautics. 2018. V. 41. Iss. 11. P. 2470–2475.
  17. Taheri E., Junkins J., Kolmanovsky I. et al. A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 1 // Acta Astronautica. 2020. V. 172. P. 151–165.
  18. Taheri E., Junkins J., Kolmanovsky I. et al. A novel approach for optimal trajectory design with multiple operation modes of propulsion system, part 2 // Acta Astronautica. 2020. V. 172. P. 166–179.
  19. Junkins J.L., Taheri E. Exploration of alternative state vector choices for low-thrust trajectory optimization // J. Guidance, Control, and Dynamics. American Institute of Aeronautics and Astronautics. 2019. V. 42. Iss. 1. P. 47–64.
  20. Geffroy S., Epenoy R. Optimal low-thrust transfers with constraints-generalization of averaging techniques // Acta Astronautica. 1997. V. 41. Iss. 3. P. 133–149.
  21. Sundman K. F. Mémoire sur le problème des trois corps // Acta mathematica. Institut Mittag-Leffler. 1913. V. 36. P. 105–179.
  22. Nacozy P. E. Time elements in Keplerian orbital elements // Celestial mechanics. 1981. V. 23. Iss. 2. P. 173–198.
  23. Brumberg E. V. Length of arc as independent argument for highly eccentric orbits // Celestial Mechanics and Dynamical Astronomy. 1992. V. 53. P. 323–328.
  24. Stiefel E.L., Scheifele G. Linear and Regular Celestial Mechanics. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, 1971. 306 p.
  25. Levi-Civita T. Sur la régularisation du probleme des trois corps // Acta mathematica. Institut Mittag-Leffler. 1920. V. 42. P. 99–144.
  26. Иванов Д.С., Трофимов С. П., Широбоков М. Г. Численное моделирование орбитального и углового движения космических аппаратов / под ред. М. Ю. Овчинникова. М: ИПМ им. М. В. Келдыша РАН, 2016. 118 с.
  27. Иванюхин А. В. Оптимизация траектории космического аппарата с идеально регулируемым двигателем в переменных Кустаанхеймо — Штифеля // Труды МАИ. 2014. № 75.
  28. Chelnokov Yu.N., Loginov M. Yu. Prediction and Correction of Spacecraft Motion Based on the Solutions of Regular Quaternion Equations in KS-Variables and Isochronous Derivatives // Proc. 29th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). Saint Petersburg, Russia. IEEE, 2022.
  29. Masat A., Romano M., Colombo C. Kustaanheimo — Stiefel Variables for Planetary Protection Compliance Analysis // J. Guidance, Control, and Dynamics. 2022. V. 45. Iss. 7. P. 1286–1298.
  30. Roa J., Urrutxua H., Peláez J. Stability and chaos in Kustaanheimo — Stiefel space induced by the Hopf fibration // Mon. Not. R. Astron. Soc. 2016. V. 459. Iss. 3. P. 2444–2454.
  31. Nocedal J., Wright S. J. Numerical Optimization. Springer New York, 2006.
  32. Roa J. Regularization in Orbital Mechanics. Berlin, Boston: De Gruyter, 2017. 403 p.
  33. Милютин А.А., Дмитрук А. В., Осмоловский Н. П. Принцип максимума в оптимальном управлении. М.: Центр прикладных исследований мехмата МГУ, 2004. 168 p.
  34. Powers W.F., Tapley B. D. Canonical transformation applications to optimal trajectory analysis. // AIAA Journal. 1969. V. 7. Iss. 3. P. 394–399.
  35. Byrd R.H., Hribar M. E., Nocedal J. An Interior Point Algorithm for Large-Scale Nonlinear Programming // SIAM J. Optim. 1999. V. 9. Iss. 4. P. 877–900.
  36. Folkner W.M., Williams J. G., Boggs D. et al. The planetary and lunar ephemerides DE430 and DE431 // Interplanetary Network Progress Report. 2014. V. 196. Iss. 1. P. 42–196.
  37. Schoenmaekers J. Post-launch Optimisation of the SMART-1 Low-thrust Trajectory to the Moon // Proc. 18th International Symposium on Space Flight Dynamics. 2004. P. 505–510.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Different families of solutions and Pareto front recovered by two different approaches

Download (96KB)
3. Fig. 2. Difference between fictitious flight time and change in eccentric anomaly for different Pareto-optimal solutions

Download (68KB)
4. Fig. 3. Computation time of locally optimal solutions by different approaches

Download (110KB)
5. Fig. 4. Conditioning numbers of the sensitivity matrix for two different approaches

Download (151KB)

Copyright (c) 2024 Russian Academy of Sciences