Динамика магнитосферы и аврорального овала во время магнитной бури 27 февраля 2023 года


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе обсуждаются причины экстремального сжатия магнитосферы во время бури 27.II.2023, когда магнитопауза пересекала геостационарную орбиту. При этом полярные сияния наблюдались на средних широтах. Глобальные параметры магнитосферных токовых систем были рассчитаны по данным параметров межпланетной среды и геомагнитных индексов, характеризующих эволюцию кольцевого тока и западного аврорального электроджета, с использованием параболоидной модели магнитосферы. Был вычислен вклад различных токовых систем в наблюдаемое значение Dst-индекса. Вклад токового слоя хвоста сравним с вкладом кольцевого тока для данной бури. Рассчитанное модельное поле сопоставлено с данными магнитометров космических аппаратов GOES-16, 18; результаты достаточно хорошо согласуются с наблюдениями.

Full Text

Restricted Access

About the authors

А. А. Лаврухин

Научно-­исследовательский институт ядерной физики имени Д. В. Скобельцына, Московский государственный университет имени М. В. Ломоносова

Author for correspondence.
Email: lavrukhin@physics.msu.ru
Russian Federation, Moscow

И. И. Алексеев

Научно-­исследовательский институт ядерной физики имени Д. В. Скобельцына, Московский государственный университет имени М. В. Ломоносова

Email: alexeev@dec1.sinp.msu.ru
Russian Federation, Moscow

Е. С. Беленькая

Научно-­исследовательский институт ядерной физики имени Д. В. Скобельцына, Московский государственный университет имени М. В. Ломоносова

Email: lavrukhin@physics.msu.ru
Russian Federation, Moscow

В. В. Калегаев

Научно-­исследовательский институт ядерной физики имени Д. В. Скобельцына, Московский государственный университет имени М. В. Ломоносова

Email: klg@dec1.sinp.msu.ru
Russian Federation, Moscow

И. С. Назарков

Научно-­исследовательский институт ядерной физики имени Д. В. Скобельцына, Московский государственный университет имени М. В. Ломоносова

Email: lavrukhin@physics.msu.ru
Russian Federation, Moscow

Д. В. Невский

Научно-­исследовательский институт ядерной физики имени Д. В. Скобельцына, Московский государственный университет имени М. В. Ломоносова; Московский государственный университет имени М. В. Ломоносова

Email: lavrukhin@physics.msu.ru
Russian Federation, Москва; Москва

References

  1. Kalegaev V.V., Makarenkov E. V. Relative importance of ring and tail currents to Dst under extremely disturbed conditions // J. Atmospheric and Solar-­Terrestrial Physics. 2008. V. 70. Iss. 2–4. P. 519–525. https://doi.org/10.1016/j.jastp.2007.08.029
  2. Tsyganenko N. A. Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause // J. Geophys. Res. 1995. V. 100. Iss. A4. P. 5599–5612. https://doi.org/10.1029/94JA03193
  3. Tsyganenko N.A. A model of the magnetosphere with a dawn-dusk asymmetry, 1, Mathematical structure // J. Geophys. Res. 2002. V. 107 Iss. A8. https://doi.org/10.1029/2001JA000219
  4. Tsyganenko N. A. A model of the near magnetosphere with a dawn-dusk asymmetry 2. Parameterization and fitting to observations // J. Geophys. Res. 2002. V. 107. Iss. A8. https://doi.org/10.1029/2001JA000220
  5. Ganushkina N. Yu., Pulkkinen T. I., Kubyshkina M. V. et al. Long-term evolution of magnetospheric current systems during storms // Ann. Geophys. 2004. V. 22. P. 1317–1334. https://doi.org/10.5194/angeo-22-1317-2004
  6. Невский Д.В, Лаврухин А. С., Алексеев И. И. Автоматическое определение положения головной ударной волны и магнитопаузы магнитосферы Меркурия по данным магнитометра космического аппарата MESSENGER // Космические исследования. 2023. Т. 61. № 3. С. 189–201. https://doi.org/10.31857/S0023420623700073
  7. Алексеев И.И., Шабанский В. П. Модель магнитосферного магнитного поля // Геомагнетизм и аэрономия. 1971. Т. 11. № 4. С. 571–579.
  8. Belenkaya E.S., Bobrovnikov S. Y., Alexeev I. I. et al. A model of Jupiter’s magnetospheric magnetic field with variable magnetopause flaring // Planetary and Space Science. 2005. V. 53. Iss. 9. P. 863–872. https://doi.org/10.1016/j.pss.2005.03.004
  9. Nguyen G., Aunai N., Michotte de Welle B. et al. Massive multi-­mission statistical study and analytical modeling of the Earth’s magnetopause: 2. Shape and location // J. Geophysical Research: Space Physics. 2022. V. 127. Art.ID. e2021JA029774. https://doi.org/10.1029/2021JA029774
  10. Collado-­Vega Y.M., Dredger P., Lopez R. E. et al. Magnetopause standoff position changes and geosynchronous orbit crossings: Models and observations // Space Weather. 2023. V. 21. Art.ID. e2022SW003212. https://doi.org/10.1029/2022SW003212
  11. Dredger P.M., Lopez R. E., Collado-­Vega Y.M. et al. Investigating potential causes for the prediction of spurious magnetopause crossings at geosynchronous orbit in MHD simulations // Space Weather. 2023. V. 21. Art.ID. e2022SW003266. https://doi.org/10.1029/2022SW003266
  12. Alexeev I.I., Belenkaya E. S., Kalegaev V. V. et al. Magnetic storms and magnetotail currents //J. Geophys. Res. 1996. V. 101. Iss. A4. P. 7737–7747. https://doi.org/10.1029/95JA03509
  13. Alexeev I.I., Kalegaev V. V., Belenkaya E. S. et al. Dynamic model of the magnetosphere: Case study for January 9–12, 1997 // J. Geophys. Res. 2001. V. 106. Iss. A11. P. 25683–25693. https://doi.org/10.1029/2001JA900057
  14. Kubyshkina M.V., Sergeev V. A., Pulkkinen T. I. Hybrid Input Algorithm: An event-­oriented magnetospheric model. J. Geophys. Res. 1999. V. 104. Iss. A11. P. 24977–24993. https://doi.org/10.1029/1999JA900222
  15. Kalegaev V.V., Ganushkina N. Y., Pulkkinen T. I. et al. Relation between the ring current and the tail current during magnetic storms // Ann. Geophys. 2005. V. 23. P. 523–533. https://doi.org/10.5194/angeo-23-523-2005
  16. Alken P., Thébault E., Beggan C. D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth Planets Space. 2021. V. 73. Iss. 49. https://doi.org/10.1186/s40623-020-01288-x
  17. Alexeev I.I., Feldstein Ya. I. Modeling of geomagnetic field during magnetic storms and comparison with observations // J. Atmospheric and Solar-­Terrestrial Physics. 2001. V. 63. Iss. 5. P. 431–440. https://doi.org/10.1016/S1364-6826(00)00170-X
  18. Bobrovnikov S. Yu., Alexeev I. I., Belenkaya E. S. et al. Case study of September 24–26, 1998 magnetic storm // Advances in Space Research. 2005. V. 36. Iss. 12. P. 2428–2433. ISSN 0273-1177. https://doi.org/10.1016/j.asr.2003.11.023
  19. Shue J.-H., Song P., Russellet C. T. et al. Magnetopause location under extreme solar wind conditions // J. Geophys. Res. 1998. V. 103. Iss. A8. P. 17691–17700. https://doi.org/10.1029/98JA01103
  20. Старков Г. В. Планетарная морфология сияний // Магнитосферно-­ионосферная физика: Краткий справочник / под ред. Ю. П. Мальцев. СПб.: Наука, 1993.
  21. Alexeev I. I. Energy flux in the Earth’s magnetosphere: Storm – substorm relationship // Space Science Reviews. 2003. V. 107. P. 141–148. https://doi.org/10.1023/A:1025519622160
  22. Dessler A.J., Parker E. N. Hydromagnetic theory of geomagnetic storms // J. Geophys. Res. 1959. V. 64. Iss. 12. P. 2239–2252. https://doi.org/10.1029/JZ064i012p02239
  23. Sckopke N. A general relation between the energy of trapped particles and the disturbance field near the Earth // J. Geophys. Res. 1966. V. 71. Iss. 13. P. 3125– 3130. https://doi.org/10.1029/JZ071i013p03125
  24. Burton R.K., McPherron R.L., Russell C. T. An empirical relationship between interplanetary conditions and Dst // J. Geophys. Res. 1975. V. 80. Iss. 31. P. 4204– 4214. https://doi.org/10.1029/JA080i031p04204
  25. O’Brien T.P., McPherron R. L. An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay // J. Geophys. Res. 2000. V. 105. Iss. A4. P. 7707–7719. https://doi.org/10.1029/1998JA000437
  26. Jordanova V.K., Torbert R. B., Thorne R. M. et al. Ring current activity during the early Bz < 0 phase of the January 1997 magnetic cloud // J. Geophys. Res. 1999. V. 104. Iss. A11. P. 24895–24914. https://doi.org/10.1029/1999JA900339
  27. Фельдштейн Я.И., Дремухина Л. А., Луи А. Т.Ю. Околоземная граница плазменного слоя в хвосте магнитосферы в периоды магнитных бурь // Геомагнетизм и аэрономия. 2000. Т. 40. № 6. С. 21–24.
  28. Калегаев В.В., Власова В. А. Относительная динамика кольцевого тока – токов хвоста магнитосферы во время геомагнитных бурь разной интенсивности // Геомагнетизм и аэрономия. 2017. Т. 57. № 5. С. 572–577. https://doi.org/10.7868/S0016794017040083.
  29. Tsyganenko N.A., Singer H. J., Kasper J. C. Storm-time distortion of the inner magnetosphere: How severe can it get? // J. Geophys. Res. 2003. V. 108. Iss. A5. Art.ID. 1209. https://doi.org/10.1029/2002JA009808
  30. Sitnik I.M., Alexeev I. I., Nevsky D. V. Debugging the FUMILIM minimization package // Computer Physics Communications. 2024. V. 294. Art.ID. 108868. https://doi.org/10.1016/j.cpc.2023.108868
  31. Kataoka R., Shiota D., Fujiwara H. et al. Unexpected space weather causing the reentry of 38 Starlink satellites in February 2022 // J. Space Weather Space Clim. 2022. V. 12. Art.ID. 41. https://doi.org/10.1051/swsc/2022034

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Parameters of the solar wind (density n, velocity v and dynamic pressure Psw), MMP (|B|, By, Bz), Ey-components of the electric field in the solar wind and parameters of the disturbance of the magnetosphere AL, Dst in the period 26-28.II.2023 (https://swx.sinp.msu.ru / Data on solar wind and MMPs are obtained from various spacecraft, taking into account the displacement of the convection time by about 40 minutes). Here and further, the vertical dashed lines show the time of the beginning of the magnetic storm and its maximum.

Download (762KB)
3. Fig. 2. The magnetic field module along the trajectory of the THEMIS A, E satellites, measured on February 26-28. Vertical dotted blue lines indicate the time of the sudden onset of the storm (19:30 UT on February 26) and the minimum of the Dst index (12:00 UT on February 27). The time intervals during which the spacecraft was inside the magnetosphere are highlighted in pink.

Download (450KB)
4. Fig. 3. BH is the component of the magnetic field of the VDH system in geostationary orbit during the period of highly compressed magnetosphere 26-28.II.2023 according to the GOES-16 and GOES-18 spacecraft.

Download (427KB)
5. Fig. 4. Trajectories of the GOES-16, 18 and THEMIS A, E satellites (26-27.II.2023) in solar-magnetospheric coordinates (GSM) in the X-Y plane. The black dot–dash line shows the position of the magnetopause at the entrance of the THEMIS A, E spacecraft into the magnetosphere (05:20/05:21 UT on February 26 and 08:06/08:00 UT on February 27); a solid black line shows the position of the magnetopause at the exit of the THEMIS spacecraft from the magnetosphere (14:14/13:58 UT on February 26 and 15:52/15:38 UT on February 27). The black dots show the position of the magnetopause at its intersection with GOES-18 (21:00 UT on February 26). Changes in the positions of the magnetopause in the X-Y plane in the GSM system are highlighted in pink in the figure. Also, on February 26, the positions of the satellites were noted during the sharp onset of a magnetic storm at 19:27 UT; on February 27, during the SYM-H minimum at 12:12 UT.

Download (433KB)
6. Fig. 5. Parameters of the paraboloid model calculated for the magnetic storm 27.II.2023.

Download (295KB)
7. Fig. 6. Upper panel: comparison of the Dst value measured on Earth (blue curve) and calculated from the model (red curve); lower panel: contributions of various current systems (Chapman–Ferraro currents, ring current and currents of the magnetosphere tail layer) to the model Dst.

Download (479KB)
8. Fig. 7. Comparison of model values and measurements of the magnetic field on the GOES-16 spacecraft.

Download (261KB)
9. Fig. 8. Comparison of model values and measurements of the magnetic field on the GOES-18 spacecraft.

Download (265KB)
10. Fig. 9. An increase in the size of the auroral oval by 1.5 times during the compression of the magnetosphere during the storm 27.II.2023, top view of the polar cap. The projection of the current layer of the magnetosphere tail is colored orange. The open lines of force extending into the lobes of the tail are shown in red, and the closed lines of force of the core of the magnetosphere are shown in blue. The zone of the daytime cold, where solar protons penetrate along the magnetic field, is shaded in green.

Download (453KB)
11. 10. Compression of the magnetosphere to a geostationary orbit at the arrival of the coronal mass ejection front during the sudden onset of a magnetic storm at 19:30 UT 26.II.2023. A corresponding change in the structure of the magnetosphere is shown. Model lines of force are drawn in the noon –midnight section in the GSM coordinate system for two states of the magnetosphere, at which the distance to the sunflower point is 10 RE (a) and 6.6 RE (b), respectively. The distance along the axes is expressed in RE. Different types of power lines are marked with different colors. The Casp lines that connect the magnetopause and the ionosphere are colored green, the open lines of the polar cap extending into the end section of the tail of the magnetosphere are red, the auroral oval lines of force that connect the current layer of the tail and the ionosphere are orange, and the closed lines of force that fill the core of the magnetosphere and cross the equatorial plane closer to the Earth where the leading edge of the current layer is located is blue.

Download (496KB)
12. Fig. 11. Comparison of the model lines of force of the Earth's magnetosphere in the noon – midnight section of the GSM coordinate system for two states of the magnetosphere during a magnetic storm, from above – for the distance to the sunflower point equal to 10 RE, from below – for 6.6 RE. Along the axes, the distance is expressed in RE.

Download (347KB)

Copyright (c) 2024 Russian Academy of Sciences