Перспективы и направления развития субтерагерцовой астрономии в Российской Федерации

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

В работе рассмотрены научные и технические перспективы и возможные направления развития субтерагерцовой астрономии в Российской Федерации. Предложена концепция создания субтерагерцовых инструментов в виде универсальной компактной антенной решетки для размещения на территории России. На базе концепции такой антенной решетки возможна реализация нескольких космических проектов субтерагерцового диапазона нового поколения – космического интерферометра и телескопа, расположенного на поверхности Луны. Наземные антенные решетки смогут выступить в качестве поддержки режима интерферометра со сверхдлинной базой обсерватории «Миллиметрон».

Texto integral

Acesso é fechado

Sobre autores

С. Лихачев

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

А. Рудницкий

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Autor responsável pela correspondência
Email: arud@asc.rssi.ru
Rússia, Москва

А. Андрианов

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

М. Андрианов

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

М. Архипов

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

А. Барышев

Астрономический институт им. Я. К. Каптейна, Университет Гронингена

Email: arud@asc.rssi.ru
Países Baixos, Гронинген

В. Вдовин

Астрокосмический центр Физического института им. П. Н. Лебедева РАН; Институт прикладной физики РАН

Email: arud@asc.rssi.ru
Rússia, Москва; Нижний Новгород

Е. Голубев

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

В. Костенко

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

Т. Ларченкова

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

C. Пилипенко

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

Я. Подобедов

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

Ж. Разананирина

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

И. Третьяков

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

С. Федорчук

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

А. Худченко

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

Р. Черный

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

М. Щуров

Астрокосмический центр Физического института им. П. Н. Лебедева РАН

Email: arud@asc.rssi.ru
Rússia, Москва

Bibliografia

  1. Catalano A., Adam R., Ade P. A.R. et al. The NIKA2 Instrument at 30-m IRAM Telescope: Performance and Results // J. Low Temperature Physics. 2018. V. 193. Iss. 5–6. P. 916–922. https://doi.org/10.3847/1538-4357/ac61df
  2. Pilbratt G., Griffin M., Barthel P. et al. The Herschel Space Observatory development, operation and post-operations: lessons learned // Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 2020. V. 11443. Art. ID 1144309. https://doi.org/10.1117/12.2561116
  3. Diaz-Garcia S., Lisenfeld U., Perez I. et al. Molecular gas and star formation within 12 strong galactic bars observed with IRAM-30 m // Astronomy and Astrophysics. 2021. V. 654. Art. ID A135. https://doi.org/10.1051/0004-6361/202140674
  4. Franceschi R., Birnstiel T., Henning T. et al. Mass determination of protoplanetary disks from dust evolution // Astronomy and Astrophysics. 2022. V. 657. Art. ID A74. https://doi.org/10.1051/0004-6361/202141705
  5. Chen С.-C., Liao C.-L., Smail I. et al. An ALMA Spectroscopic Survey of the Brightest Submillimeter Galaxies in the SCUBA-2-COSMOS Field (AS2COSPEC): Survey Description and First Results // Astrophysical J. 2022. V. 929. Iss. 2. Art. ID 159. https://doi.org/10.3847/1538-4357/ac61df
  6. Trinca A., Schneider R., Maiolino R. et al. Seeking the growth of the first black hole seeds with JWST // arXiv e-prints. 2022. arXiv:2211.01389.
  7. Akiyama K., Alberdi A., Alef W. et al. Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole // Astrophysical J. Letters. 2019. V. 875. Iss. 1. Art. ID L1. https://doi.org/10.3847/2041-8213/ab0ec7
  8. Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way // Astrophysical J. Letters. 2022. V. 930. Iss. 2. Art. ID L12. https://doi.org/10.3847/2041-8213/ac6674
  9. Hong X., Shen Z., An T. et al. The Chinese space Millimeter-wavelength VLBI array-A step toward imaging the most compact astronomical objects // Acta Astronautica. 2014. V. 102. P. 217–225. https://doi.org/10.1016/j.actaastro.2014.05.026
  10. Palumbo D., Johnson M., Doeleman S. et al. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging // American Astronomical Society Meeting Abstracts. 2018. V. 231. Art. ID 347.21.
  11. Kudriashov V., Martin-Neira M., Barat I. et al. System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept // Chinese J. Space Science. 2019. V. 39. Iss. 2. Art. ID 250. https://doi.org/10.11728/cjss2019.02.250
  12. Raymond A. W., Palumbo D., Paine S. N. et al. Evaluation of New Submillimeter VLBI Sites for the Event Horizon Telescope // Astrophysical J. Supplement. 2021. V. 253. Iss. 1. https://doi.org/10.3847/1538-3881/abc3c3
  13. Gurvits L. I., Paragi Z., Casasola V. et al. THEZA: TeraHertz Exploration and Zooming-in for Astrophysics // Experimental Astronomy. 2021. V. 51. Iss. 3. P. 559–594. https://doi.org/10.1007/s10686-021-09714-y
  14. Gurvits L. I., Paragi Z., Amils R. I. et al. The science case and challenges of space-borne sub-millimeter interferometry // Acta Astronautica. 2022. V. 196. P. 314– 333. https://doi.org/10.1016/j.actaastro.2022.04.020
  15. Kardashev N. S., Novikov I. D., Lukash V. N. et al. Review of scientific topics for the Millimetron space observatory // Physics Uspekhi. 2014. V. 57. Iss. 12. P. 1199–1228. https://doi.org/10.3367/UFNe.0184.201412c.1319
  16. Novikov I. D., Likhachev S. F., Shchekinov Yu.A. et al. Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization // Physics Uspekhi. 2021. V. 64. Iss. 4. P. 386– 419. https://doi.org/10.3367/UFNe.2020.12.038898
  17. Artemenko Yu.N., Balega Yu. Yu., Baryshev A. M. et al. New stage of the Suffa submm observatory in Uzbekistan project // Proc. ISSTT 2019–30th Intern. Symp. Space Terahertz Technology. 2019. P. 196–201.
  18. Bubnov G., Vdovin V., Khaikin V. et al. Analysis of variations in factors of specific absorption of sub-terahertz waves in the Earth’s atmosphere // 7th All-Russian Microwave Conf. (RMC). 2020. P. 229–232. https://doi.org/10.1109/RMC50626.2020.9312314.
  19. Balega Yu., Bubnov G., Glyavin M. et al. Atmospheric Propagation Studies and Development of New Instrumentation for Astronomy, Radar, and Telecommunication Applications in the Subterahertz Frequency Range // Applied Sciences. 2022. V. 12. Iss. 11. Art. ID 5670. https://doi.org/10.3390/app12115670
  20. Abramovici A., Althouse W. E., Drever R. W.P. et al. LIGO: The Laser Interferometer Gravitational Wave Observatory // Science. 1992. V. 256. Iss. 5055. P. 325– 333. https://doi.org/10.1126/science.256.5055.325
  21. Caron B., Dominjon A., Drezen C. et al. The Virgo interferometer // Classical and Quantum Gravity. 1997. V. 14. Iss. 6. P. 1461–1469. https://doi.org/10.1088/0264-9381/14/6/011
  22. Danzmann K. and LISA Study Team. LISA – an ESA cornerstone mission for a gravitational wave observatory // Classical and Quantum Gravity. 1997. V. 14. Iss. 6. P. 1399–1404. https://doi.org/10.1088/0264-9381/14/6/002
  23. Akiyama K, Alberdi A, Alef W. et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation // Astrophysical J. Letters. 2019. V. 875. Iss. 1. Art. ID L2. https://doi.org/10.3847/2041-8213/ab0c96
  24. Andrianov A., Chernov S., Girin I. et al. Flares and their echoes can help distinguish photon rings from black holes with space-Earth very long baseline interferometry // Phys. Rev. D. 2022. V. 105. Iss. 6. Art. ID 063015. https://doi.org/10.1103/PhysRevD.105.063015
  25. Tiede P., Johnson M. D., Pesce D. W. et al. Measuring Photon Rings with the ngEHT // arXiv e-prints. 2022. arXiv:2210.13498.
  26. Mortlock D. J., Warren S. J., Venemans B. P. et al. A luminous quasar at a redshift of z=7.085 // Nature. 2011. V. 474. Iss. 7353. P. 616–619. https://doi.org/10.1038/nature10159
  27. Banados E., Venemans B. P., Mazzucchelli C. et al. An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 // Nature. 2018. V. 553. Iss. 7689. P. 473–476. https://doi.org/10.1038/nature25180
  28. Volonteri M. The Formation and Evolution of Massive Black Holes // Science. 2012. V. 337. Iss. 6094. Art. ID 544. https://doi.org/10.1126/science.1220843
  29. Tal A., Priyamvada N. Rapid growth of seed black holes in the early universe by supra-exponential accretion // Science. 2014. V. 345. Iss. 6202. P. 1330–1333. https://doi.org/10.1126/science.1251053
  30. Woods T. E., Agarwal B., Bromm V. et al. Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes // Publ. Astronomical Society of Australia. 2019. V. 36. Art. ID e027. https://doi.org/10.1017/pasa.2019.14
  31. Hickox R. C., Alexander D. M. Obscured Active Galactic Nuclei // Annual Review of Astronomy and Astrophysics. 2018. V. 56. P. 625–671. https://doi.org/10.1146/annurev-astro-081817-051803
  32. Spinoglio L., Alonso-Herrero A., Armus L. et al. Galaxy Evolution Studies with the SPace IR Telescope for Cosmology and Astrophysics (SPICA): The Power of IR Spectroscopy // Publications of the Astronomical Society of Australia. 2017. V. 34. Art. ID e057. https://doi.org/10.1017/pasa.2017.48
  33. Humphreys E. M.L., Vlemmings W. H.T., Impellizzeri C. M.V. et al. Detection of 183 GHz H2O megamaser emission towards NGC4945 // Astronomy and Astrophysics. 2016. V. 592. Art. ID L13. https://doi.org/10.1051/0004-6361/201629168
  34. Hagiwara Y., Horiuchi S., Doi A. et al. A Search for Submillimeter H2O Masers in Active Galaxies: The Detection of 321 GHZ H2O Maser Emission in NGC4945 // Astrophysical J. 2016. V. 827. Iss. 1. Art. ID 69. https://doi.org/10.3847/0004-637X/827/1/69
  35. Researchers Use NRAO Telescope to Study Formation of Chemical Precursors to Life // National Radio Astronomy Observatory Press Release. August 2006. https://www.nrao.edu/pr/2006/gbtmolecules.
  36. McGuire B.A., Loomis R. A., Burkhardt A. M. et al. Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering // Science. 2021. V. 371. Iss. 6535. P. 1265–1269. https://doi.org/10.1126/science.abb7535
  37. Plavin A. V., Kovalev Y. Y., Kovalev Yu.A. et al. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars // Astrophysical J. 2021. V. 908. Iss. 2. Art. ID 157. https://doi.org/10.3847/1538-4357/abceb8
  38. Abbott B. P., Abbott R., Abbott T. D. et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB170817A // Astrophysical J. Letters. 2017. V. 848. Iss. 2. Art. ID L13. https://doi.org/10.3847/2041-8213/aa920c
  39. Cogdell J. R., McCue J.J.G., Kalachev P. D. et al. High-resolution millimeter reflector antennas // IEEE Transactions on Antennas and Propagation. 1970. V. 18. P. 515–529. https://doi.org/10.1109/TAP.1970.1139725
  40. Антюфеев А. В., Зубрин С. Ю., Мышенко В. В. и др. Исследование параметров антенны РТ-22 КрАО на длине волны 3.42 мм // Радиофизика и радиоастрономия. 2009. Т. 14. № 4. С. 345–352.
  41. Balega Yu. Yu., Bataev D. K., Bubnov G. M. et al. Direct Measurements of Atmospheric Absorption of Subterahertz Waves in the Northern Caucasus // Physics-Doklady. 2022. V. 67. Iss. 1. P. 1–4. https://doi.org/10.1134/S1028335822010013
  42. Liebe H. J., Rosenkranz P. W., Hufford G. A. Atmospheric 60-GHz oxygen spectrum – New laboratory measurements and line parameters // J. Quantitative Spectroscopy and Radiative Transfer. 1992. V. 48. Iss. 5–6. P. 629–643. https://doi.org/10.1016/0022-4073(92)90127-P
  43. Paiella A., Ade P. A.R., Battistelli E. S. et al. In-Flight Performance of the LEKIDs of the OLIMPO Experiment // J. Low Temperature Physics. 2020. V. 199. Iss. 1–2. P. 491–501. https://doi.org/10.1007/s10909-020-02372-y
  44. Rioja M. J., Dodson R., Asaki Y. The Transformational Power of Frequency Phase Transfer Methods for ngEHT // Galaxies. 2023. V. 11. Iss. 1. Art. ID. 16. https://doi.org/10.3390/galaxies11010016
  45. Mimoun D., Wieczorek M. A., Alkalai L. et al. Farside explorer: unique science from a mission to the farside of the Moon // Experimental Astronomy. 2012. V. 33. Iss. 2–3. P. 529–585. https://doi.org/10.1007/s10686-011-9252-3
  46. Zarka P., Bougeret J.-L., Briand C. et al. Planetary and exoplanetary low frequency radio observations from the Moon // Planetary and Space Science. 2012. V. 74. Iss. 1. P. 156–166. https://doi.org/10.1016/j.pss.2012.08.004
  47. Sachkov M., Shugarov A., Schmagin V. et al. The concept of lunar-based astrophysical telescope for International Lunar Research Station (ILRS) // Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 2022. V. 12181. Art. ID. 121812V. https://doi.org/10.1117/12.2629619
  48. Jester S., Falcke H. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets // New Astronomy Reviews. 2009. V. 53. Iss. 1–3. P. 1–26. https://doi.org/10.1016/j.newar.2009.02.001
  49. Lazio J., Carilli C., Hewitt J. et al. The lunar radio array (LRA) // Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts IV. 2009. V. 7436. Art ID. 74360I. https://doi.org/10.1117/12.827955
  50. Wolt M. K., Aminaei A., Zarka P. et al. Radio astronomy with the European Lunar Lander: Opening up the last unexplored frequency regime // Planetary and Space Science. 2012. V. 74. Iss. 1. P. 167–178. https://doi.org/10.1016/j.pss.2012.09.004
  51. Гафаров А. А., Долгуничев К. Д. Обеспечение радиационной безопасности космических радиоизотопных генераторов // Вестник НПО им. С. А. Лавочкина. 2016. Т. 32. № 2. С. 78–84.
  52. Martin-Neira M., Li W., Andres-Beivide A. et al. “Cookie”: A Satellite Concept for GNSS Remote Sensing Constellations // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2016. V. 9. Iss. 10. P. 4593–4610. https://doi.org/10.1109/JSTARS.2016.2585620
  53. Kudriashov V., Falcke H., Gurvits L. et al. System design progress in the event horizon imaging using the concept of space-to-space VLBI from medium earth orbits // Proc. 42nd COSPAR Scientific Assembly. 2018. V. 42. Art. ID. E1.8–17–18
  54. Kudriashov V., Martin-Neira M., Barat I. et al. System Design for the Event Horizon Imaging Experiment Using the PECMEO Concept // Chinese J. Space Science. 2019. V. 39. Iss. 2. P. 250–266. https://doi.org/10.11728/cjss2019.02.250
  55. Roelofs F., Falcke H., Brinkerink C. et al. Simulations of imaging the event horizon of Sagittarius A* from space // Astronomy and Astrophysics. 2019. V. 625. Art. ID. A124. https://doi.org/10.1051/0004-6361/201732423
  56. Kudriashov V., Martin-Neira M., Roelofs F. Event Horizon Imager (EHI) mission concept utilizing medium Earth orbit sub-mm interferometry // Chinese J. Space Science. 2021. V. 41. Iss. 2. P. 211–233. https://doi.org/10.11728/cjss2021.02.211
  57. Gurvits L. I., Paragi Z., Casasola V. et al. THEZA: TeraHertz Exploration and Zooming-in for Astrophysics // Experimental Astronomy. 2021. V.51. Iss. 3. P. 559– 594. https://doi.org/10.1007/s10686-021-09714-y
  58. Likhachev S. F., Rudnitskiy A. G., Shchurov M. A. et al. High-resolution imaging of a black hole shadow with Millimetron orbit around Lagrange point L2 // Monthly Notices of the Royal Astronomical Society. 2022. V. 511. P. 668–682. https://doi.org/10.1093/mnras/stac079
  59. Golubev E. S., Kotsur E. K., Arkhipov M. Yu. et al. Primary mirror panels of the Millimetron Space Observatory // Proc. SPIE. Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation IV. 2020. V. 11451. Art ID. 114510K. https://doi.org/10.1117/12.2562838
  60. Yusov A. V., Kozlov S. A., Ustinova E. A. et al. Testing high-precision electromechanical actuators used for adjustment of deployable antennas of astronomy space missions // Cryogenics. 2021. V. 118. Art. ID. 103346. https://doi.org/10.1016/j.cryogenics.2021.103346
  61. Демидов Н. А., Беляев А. А., Поляков В. А. и др. Бортовой водородный стандарт частоты для космической обсерватории «Миллиметрон» // Измерительная техника. 2018. Т. 8. С. 36–39. https://doi.org/10.32446/0368-1025it-2018-8-36-39
  62. de Graauw T., Helmich F. P., Phillips T. G. et al. The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) // Astronomy and Astrophysics. 2010. V. 518. Art. ID. L6. https://doi.org/10.1051/0004-6361/201014698
  63. Tucker J. R., Feldman M. J. Quantum detection at millimeter wavelengths // Reviews Modern Physics. 1985. V. 57. Iss. 4. P. 1055–1113. https://doi.org/10.1103/RevModPhys.57.1055
  64. Goltsman G. N., Semenov A. D., Gousev Y. P. et al. Sensitive picosecond NbN detector for radiation from millimeter wavelengths to visible light // Superconductor Science and Technology. 1991. V. 4. Iss. 9. Art. ID. 453. https://doi.org/10.1088/0953-2048/4/9/020
  65. Wootten A., Thompson R. A. The Atacama Large Millimeter/Submillimeter Array // Proceedings of the IEEE. 2009. V. 97. Iss. 8. P. 1463–1471. https://doi.org/10.1109/JPROC.2009.2020572
  66. Chenu J.-Y., Navarrini A., Bortolotti Y. et al. The Front-End of the NOEMA Interferometer // IEEE Transactions on Terahertz Science and Technology. 2016. V. 6. Iss. 2. P. 223–237. https://doi.org/10.1109/TTHZ.2016.2525762
  67. de Lange G., Birk M., Boersma D. et al. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder // Superconductor Science and Technology. 2010. V. 23. Iss. 4. Art. ID. 045016. https://doi.org/10.1088/0953-2048/23/4/045016
  68. Hesper R., Khudchenko A., Baryshev A. M. et al. A High-Performance 650-GHz Sideband-Separating Mixer–Design and Results // IEEE Transactions on Terahertz Science and Technology. 2017. V. 7. Iss. 6. P. 686–693. https://doi.org/10.1109/TTHZ.2017.2758270
  69. Kojima T., Kroug M., Uemizu K. et al. Performance and Characterization of a Wide IF SIS-Mixer-Preamplifier Module Employing High-J c SIS Junctions // IEEE Transactions on Terahertz Science and Technology. 2017. V. 7. Iss. 6. P. 694–703. https://doi.org/10.1109/TTHZ.2017.2758260
  70. Baryshev A. M., Hesper R., Mena F. P. et al. The ALMA Band 9 receiver. Design, construction, characterization, and first light // Astronomy & Astrophysics. 2015. V. 577. Art. ID. A129. https://doi.org/10.1051/0004-6361/201425529
  71. Tretyakov I., Ryabchun S., Finkel M. et al. Low noise and wide bandwidth of NbN hot-electron bolometer mixers // Applied Physics Letters. 2011. V. 98. Iss. 3. Art. ID. 033507. https://doi.org/10.1063/1.3544050
  72. Putz P., Honingh C. E., Jacobs K. et al. Terahertz hot electron bolometer waveguide mixers for GREAT // Astronomy & Astrophysics. 2012. V. 542. Art. ID. L2. https://doi.org/10.1051/0004-6361/201218916
  73. Risacher C., Güsten R., Stutzki J. et al. First Supra-THz Heterodyne Array Receivers for Astronomy with the SOFIA Observatory // IEEE Transactions on Terahertz Science and Technology. 2016. V. 6. Iss. 2. P. 199–211. https://doi.org/10.1109/TTHZ.2015.2508005
  74. Khudchenko A., Pavelev D. G., Vaks V. L. et al. Overview of Techniques for THz QCL phase-locking // European Physical J. Web of Conferences. 2018. V. 195. Art. ID. 04003. https://doi.org/10.1051/epjconf/201819504003
  75. Koshelets V. P., Shitov S. V., Ermakov A. B. et al. Superconducting integrated receiver for TELIS // IEEE Transactions on Applied Superconductivity. 2005. V. 15. Iss. 2. P. 960–963. https://doi.org/10.1109/TASC.2005.850138
  76. Khudchenko A., Baryshev A. M., Rudakov K. I. et al. High-Gap Nb-AlN-NbN SIS Junctions for Frequency Band 790–950 GHz // IEEE Transactions on Terahertz Science and Technology. 2016. V. 6. Iss. 1. P. 127–132. https://doi.org/10.1109/TTHZ.2015.2504783
  77. Gusten R., Booth R. S., Cesarsky C. et al. APEX: the Atacama Pathfinder Experiment // Ground-based and Airborne Telescopes. 2006. V. 6267. Art. ID. 626714. https://doi.org/10.1117/12.670798
  78. Yagoubov P., Mroczkowski T., Belitsky V. et al. Wideband 67–116 GHz receiver development for ALMA Band 2 // Astronomy & Astrophysics. 2020. V. 634. Art. ID. A46. https://doi.org/10.1051/0004–6361/201936777
  79. Rudakov K. I., Khudchenko A. V., Filippenko L. V. et al. THz Range Low-Noise SIS Receivers for Space and Ground-Based Radio Astronomy // Applied Sciences. 2021. V. 11. Iss. 21. https://doi.org/10.3390/app112110087

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Sketch map georeferencing of six EAR antennas on the plateau site of Mayak, Dagestan. Mayak, Dagestan. Vertically - latitude, horizontally - longitude in degrees. All realisable 15 EAR bases are highlighted.

Baixar (16KB)
3. Fig. 2. Example of (u, v) plane filling during the observation of radio sources M87 (left) and Sgr A* (right) on the EAR grating. The coordinate scales u and v are presented in wavelengths λ - 105 (λ = 1 mm).

Baixar (26KB)
4. Fig. 3. Concept of the antenna array located in the crater of the Moon: 1 - service module, 2 - antenna modules, 3 - interface cables.

Baixar (17KB)
5. Fig. 4. General view of the observatory in the dark crater. On the left - service module, on the right - antenna module. 1 - landing unit, 2 - solar panels, 3 - ramp, 4 - robotic interface cart, 5 - mirror system, 6 - lens hood, 7 - additional heat shield.

Baixar (33KB)
6. Fig. 5. General view of the system placed on the illuminated surface of the Moon: 1 - mirror system, 2 - heat shield, 3 - solar batteries, 4 - radiator, 5 - landing block.

Baixar (18KB)
7. Fig. 6. General view of the system based on mobile platforms: 1 - universal reusable unit, 2 - ramp, 3 - mirror system hood with detachable cover, 4 - heat shield, 5 - solar panels, 6 - mobile platform.

Baixar (27KB)
8. Fig. 7. General view of the mirror system: 1 - panels of the main mirror, 2 - secondary mirror, 3 - frame, 4 - actuator, 5 - container with receivers.

Baixar (25KB)
9. Fig. 8. Left - Millimetron panel when measuring on the control measuring machine (CMM), right - deviation field (RMS - 7.2 µm).

Baixar (29KB)
10. Fig. 9. Concept of an observatory in a mobile shelter for use on Earth.

Baixar (15KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024