Энтропийные функционалы и информация различия временных рядов спутникового мониторинга
- Authors: Антонов Ю.1, Захаров В.2, Сухарева Н.2,3
-
Affiliations:
- Московский государственный университет им. М.В. Ломоносова, Центр информационных средств и технологий
- Московский государственный университет им. М.В. Ломоносова
- Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына, Московский государственный университет им. М.В. Ломоносова
- Issue: Vol 61, No 6 (2023)
- Pages: 498-509
- Section: Articles
- URL: https://kld-journal.fedlab.ru/0023-4206/article/view/672572
- DOI: https://doi.org/10.31857/S0023420623600149
- EDN: https://elibrary.ru/CBUWSZ
- ID: 672572
Cite item
Abstract
Обсуждаются результаты информационного анализа временных рядов спутникового мониторинга состояния межпланетного магнитного поля, предоставляемые базой данных Центра космических полетов Годдарда (англ. NASA Goddard Space Flight Center). В арсенале методов анализа основное внимание отводится контролю неэкстенсивных свойств при масштабировании временных выборок, создаваемых на основе временных рядов 2001–2022 гг. Демонстрируется перестройка модальности функции распределения вероятности для компонент межпланетного магнитного поля в рассматриваемом ансамбле реализаций. Представлены результаты реконструкции кинетики энтропийных мер Шеннона–Больцмана–Гиббса, Тсаллиса и Реньи. В неэкстенсивном приближении анализируется влияние q-деформации фазового пространства на стохастические режимы исследуемой системы. В работе впервые совместно исследуются кинетика информационного расхождения и кинетика энтропийных мер ансамбля реализаций значений межпланетного магнитного поля. Указывается необходимость согласования q-параметров деформации фазового пространства, опорной и контролируемой подсистем, в том числе, при использовании асимптотических приближений в методиках прогноза с применением нейросетевых алгоритмов и алгоритмов глубокого обучения.
About the authors
Ю. Антонов
Московский государственный университет им. М.В. Ломоносова, Центр информационных средств и технологий
Email: SuharevaNA@my.msu.ru
Россия, Москва
В. Захаров
Московский государственный университет им. М.В. Ломоносова
Email: SuharevaNA@my.msu.ru
Россия, Москва
Н. Сухарева
Московский государственный университет им. М.В. Ломоносова; Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына,Московский государственный университет им. М.В. Ломоносова
Author for correspondence.
Email: SuharevaNA@my.msu.ru
Россия, Москва; Россия, Москва
References
- Balasis G., Daglis I.A., Papadimitriou C. et al. Dynamical complexity in dst time series using non-extensive Tsallis entropy // Geophysical Research Letters. 2008. V. 35. Iss. 14.
- Balasis G., Daglis I.A., Papadimitriou C. et al. Investigating dynamical complexity in the magnetosphere using various entropy measures // J. Geophysical Research: Space Physics. 2009. V. 114. Iss. A9.
- Balasis G., Eftaxias K. A study of non-extensivity in the earths magnetosphere // The European Physical J. Special Topics. 2009. V. 174. P. 219–225.
- Pavlos G., Karakatsanis L., Xenakis M. et al. Tsallis statistics and magnetospheric self-organization // Physica A: Statistical Mechanics and Its Applications. 2012. V. 391. Iss. 11. P. 3069–3080.
- Balasis G., Daglis I.A., Papadimitriou C. et al. Quantifying dynamical complexity of magnetic storms and solar flares via nonextensive Tsallis entropy // Entropy. 2011. V. 13. Iss. 10. P. 1865–1881.
- Balasis G., Daglis I.A., Anastasiadis A. et al. Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics // Physica A: Statistical Mechanics and its Applications. 2011. V. 390. Iss. 2. P. 341–346.
- Balasis G., Donner R.V., Potirakis S.M. et al. Statistical mechanics and information-theoretic perspectives on complexity in the earth system // Entropy. 2013. V. 15. Iss. 11. P. 4844–4888.
- Pavlos G., Karakatsanis L., Xenakis M. et al. Universality of non-extensive Tsallis statistics and time series analysis: Theory and applications // Physica A: Statistical Mechanics and its Applications. 2014. V. 395. P. 58–95. https://doi.org/10.1016/j.physa.2013.08.026
- Gopinath S., Prince P. Nonextensive and distance-based entropy analysis on the influence of sunspot variability in magnetospheric dynamics // Acta Geodaetica et Geophysica. 2018. V. 53. P. 639–659. https://doi.org/10.1007/s40328-018-0235-y
- Shizgal B.D. The use of the Pearson differential equation to test energetic distributions in space physics as kappa distributions; implication for Tsallis nonextensive entropy: II,” Astrophysics and Space Science. 2022. V. 367. № 7. https://doi.org/10.1007/s10509-021-04033-2
- Wawrzaszek A., Modzelewska R., Krasin´ska A. Fractal dimension analysis of Earth magnetic field during 26 august 2018 geomagnetic storm // Entropy. 2022. V. 24. Iss. 5. Art. ID. 699. https://doi.org/10.3390/e24050699
- Pitsis V., Balasis G., Daglis I. et al. Power-law dependence of the wavelet spectrum of ground magnetic variations during magnetic storms // Advances in Space Research. 2023. V. 71. Iss. 5. P. 2288–2298. https://doi.org/10.1016/j.asr.2022.10.064
- Boutsi A., Balasis G., Dimitrakoudis S. et al. Investigation of the geomagnetically induced current index levels in the Mediterranean region during the strongest magnetic storms of solar cycle 24 // Space Weather. 2023. V. 21. Iss. 2. https://doi.org/10.1029/2022SW003122
- Chian A.-L., Borotto F., Hada T. et al. Chaos, complexity, and intermittent turbulence in space plasmas. 2022. https://arxiv.org/pdf/2204.06133.pdf
- Jayapal R., Anilkumar C., Unnikrishnan K. et al. Tsallis’ analysis of the horizontal component of the Earth’s magnetic field over India during 2002 // Asian J. Research and Reviews in Physics. 2022. V. 6. Iss. 4. P. 39–47. https://doi.org/10.9734/ajr2p/2022/v6i4128
- Kolesnichenko A.V., Chetverushkin B.N. Derivation of hydrodynamic and quasihydrodynamic equations for transport systems based on statistics of Tsallis // Keldysh Institute Preprints. 2014. P. 8–32.
- Kolesnichenko A. On construction of the entropy transport model based on the formalism of nonextensive statistics // Mathematical models and computer simulations. 2014. V. 6. Iss. 6. P. 587–597. https://doi.org/10.1134/S2070048214060052
- Tsallis C. Introduction to nonextensive statistical mechanics: approaching a complex world. Springer Science & Business Media, 2009. https://doi.org/10.1007/978-0-387-85359-8
- Abe S. Stability of Tsallis entropy and instabilities of Renyi and normalized Tsallis entropies: A basis for q-exponential distributions // Physical Review. 2002. V. 66. № 4. Art. ID. 046134. https://doi.org/10.1103/PhysRevE.66.046134
- Bashkirov A., Vityazev A. Information entropy and power-law distributions for chaotic systems // Physica A: Statistical Mechanics and its Applications. 2000. V. 277. Iss. 1–2. P. 136–145.
- Bashkirov A. Maximum Renyi entropy principle for systems with power-law hamiltonians // Physical Review Letters. 2004. V. 93. Iss. 13. Art. ID. 130601.
- Bashkirov A.G. Renyi entropy as a statistical entropy for complex systems // Theoretical and Mathematical Physics. 2006. V. 149. Iss. 2. P. 1559–1573.
- Tsallis C. Possible generalization of Boltzmann-Gibbs statistics // J. Statistical Physics. 1988. V. 52. P. 479–487.
- Curado E.M., Tsallis C. Generalized statistical mechanics: connection with thermodynamics // J. Physics A: mathematical and general. 1991. V. 24. Iss. 2. Art. ID. L69.
- Mariz A.M. On the irreversible nature of the Tsallis and Renyi entropies // Physics Letters A. 1992. V. 165. Iss. 5–6. P. 409–411.
- Sánchez E., González-Navarrete M., Caamaño C. Bivariate superstatistics: an application to statistical plasma physics // European Physical J. B. 2021. V. 94. Iss. 55. P. 1–7. https://doi.org/10.1140/epjb/s10051-021-00066-2
- Ferri G., Martinez S., Plastino A. The role of constraints in Tsallis’ nonextensive treatment revisited // Physica A: Statistical Mechanics and its Applications. 2005. V. 347. P. 205–220.
- Curado E.M., Tempesta P., Tsallis C. A new entropy based on a group-theoretical structure // Annals of Physics. 2016. V. 366. Iss. 1–2. P. 22–31. https://doi.org/10.1016/j.aop.2015.12.008
- Sharma B., Mittal D. New non-additive measures of relative information // J. Combinatorics Information & System Sciences. 1977. V. 2. Iss. 4. P. 122–132.
- Scarfone A., Wada T. Thermodynamic equilibrium and its stability for microcanonical systems described by the Sharma-Taneja-Mittal entropy // Physical Review. 2005. V. 72. Iss. 2. Art.ID. 026123.
- Frank T., Plastino A. Generalized thermostatistics based on the Sharma – Mittal entropy and escort mean values // European Physical J. B. 2002. V. 30. Iss. 4. P. 543–549. https://doi.org/10.1140/epjb/e2002-00412-6
- Akturk E., Bagci G., Sever R. Is Sharma-Mittal entropy really a step beyond Tsallis and Renyi entropies? 2007. https://doi.org/10.48550/arXiv.cond-mat/0703277
- Kolesnichenko A.V. Two-parameter entropy the Sharma–Mittal functional as corefamily of nonlinear Fokker–Planck–Kolmogorov equations // Keldysh Institute Preprints. 2021. V. 3. https://doi.org/10.20948/prepr-2021-3
- Renyi A. Foundations of probability. Courier Corporation, 2007.
- Landsberg P.T., Vedral V. Distributions and channel capacities in generalized statistical mechanics // Physics Letters A. 1998. V. 247. Iss. 3. P. 211–217.
- Zaripov R. An entropy group and its representation in thermodynamics of nonextensive systems // Russian Physics. J. 2009. V. 52. Iss. 2.
- Zaripov R. Changes in the entropy and the Tsallis difference information during spontaneous decay and self-organization of nonextensive systems // Russian Physics. J. 2001. V. 44. Iss. 11. P. 1159–1165.
- Zaripov R. On thermodynamic equilibrium of nonextensive systems // Technical Physics. 2006. V. 51. Iss. 11.
- Kolesnichenko A.V. To the construction of the thermodynamics of non-additive media on the basis of the statistics of Tsallis–Mendes–Plastino // Keldysh Institute Preprints. 2018. P. 23–28. https://doi.org/10.20948/prepr-2018-23
- Parvan A. Study of invariance of nonextensive statistics under the uniform energy spectrum translation // Physica A: Statistical Mechanics and its Applications. 2022. V. 588. Art.ID. 126556. https://doi.org/10.1016/j.physa.2021.126556
- Kolesnichenko A., Marov M.Y. Modification of the jeans instability criterion for fractal-structure astrophysical objects in the framework of nonextensive statistics // Solar System Research. 2014. V. 48. P. 354–365. https://doi.org/10.1134/S0038094614050037
- Kullback S., Leibler R.A. On information and sufficiency // Annals of mathematical statistics. 1951. V. 22. Iss. 1. P. 79–86.
- Zaripov R. Change in the kul’bak information difference as a self-organized system evolves in parameter space // Russian Physics J. 1995. V. 38. Iss. 2. P. 182–185. https://doi.org/10.1007/BF00560244
- Zaripov R. Change in the information difference during evolution of nonextensive systems in the space of control parameters // Russian Physics J. 2004. V. 47. Iss. 6. P. 647–655.
- Renyi A. On measures of entropy and information // Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability. 1961. V. 1. P. 547–562.
- Zaripov R. Evolution of the entropy and Renyi difference information during selforganization of open additive systems // Russian Physics J. 2005. V. 48. Iss. 3. P. 267–274.
- Kumar E.A., Kumar S. Geomagnetic storm effect on F2-region ionosphere during 2012 at low-and mid-latitude-latitude stations in the southern hemisphere // Atmosphere. 2022. V. 13. Iss. 3. https://doi.org/10.3390/atmos13030480
- Kurazhkovskaya N., Kline B. Reorientation of the IMF Bz Component as a Trigger of Isolated Bursts of Long-Period Pulsations in the Region of the Dayside Polar Cusp // Geomagnetism and Aeronomy. 2021. V. 61. Iss. 4. P. 478–489. https://doi.org/10.1134/S0016793221040083
Supplementary files
