Optimization of a Low-Thrust Heliocentric Trajectory between the Collinear Libration Points of Different Planets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study is to optimize a low-thrust interplanetary trajectory using collinear libration points L1 and L2 as the junction points of the geocentric or planetocentric segments of the trajectory with the heliocentric segment. The problem of optimizing the heliocentric segment of perturbed low-thrust interplanetary transfer is considered in the four-body ephemeris model, which includes the Sun, Earth, target planet, and spacecraft. To optimize the trajectories, an indirect approach is used based on Pontryagin’s maximum principles and the continuation method. The possibility of reducing the characteristic velocity in comparison with the estimates obtained through the method of zero sphere of influence is shown.

About the authors

V. G. Petukhov

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute, 125080, Moscow, Russia

Email: PetukhovVG@mai.ru
Россия, Москва

S. W. Yoon

Moscow Aviation Institute, 125080, Moscow, Russia

Author for correspondence.
Email: YunSU@mai.ru
Россия, Москва

References

  1. Topputo F., Belbruno E. Earth–Mars transfers with ballistic capture // Celestial Mechanics and Dynamical Astronomy. 2015. V. 121. Iss. 4. P. 329–346. https://doi.org/10.1007/s10569-015-9605-8
  2. Mingotti G., Topputo F., Bernelli-Zazzera F. Earth – Mars transfers with ballistic escape and low-thrust capture // Celestial Mechanics and Dynamical Astronomy. 2011. V. 110. Iss. 2. P. 169–188. https://doi.org/10.1007/s10569-011-9343-5
  3. Mingotti G., Gurfil P. Mixed low-thrust invariant-manifold transfers to distant prograde orbits around Mars // J. Guidance, Control, and Dynamics. 2010. V. 33. Iss. 6. P. 1753–1764. https://doi.org/10.2514/1.49810
  4. Topputo F., Vasile M., Bernelli-Zazzera F. Low Energy Interplanetary Transfers Exploiting Invariant Manifolds of the Restricted Three-Body Problem // The J. Astronautical Sciences. 2005. V. 53. Iss. 4. P. 353–372. https://doi.org/10.1007/BF03546358
  5. Ovchinnikov M. Interplanetary Small-Satellite Missions: Ballistic Problems and Their Solutions // Gyroscopy and Navigation. 2021. V. 12. Iss. 4. P. 281–293. https://doi.org/10.1134/S2075108721040064
  6. Lo M., Ross S. The Lunar L1 Gateway: Portal to the Stars and Beyond // AIAA Space 2001 Conference. 28–30 Aug. 2001, Albuquerque, New Mexico. https://doi.org/10.2514/6.2001-4768
  7. Ross S., Koon W., M.W. Lo et al. Design of a Multi-Moon Orbiter // 13th AAS/AIAA Space Flight Mechanics Meeting. 9–13 Feb. 2003, Ponce, Puerto Rico. Art. ID. AAS 03-143. P. 669.
  8. Loeb H., Petukhov V., Popov G.A. et al. A Realistic concept of a manned Mars mission with nuclear-electric propulsion // Acta Astronautica. 2015. V. 116. P. 299–306. https://doi.org/10.1016/j.actaastro.2015.07.019
  9. Petukhov V., Yoon S.W. End-to-End Optimization of Power-Limited Earth – Moon Trajectories // Aerospace. 2023. V. 10. Iss. 3. Art. ID. 231. 21 p. https://doi.org/10.3390/aerospace10030231
  10. Petukhov V.G. One numerical method to calculate optimal power-limited trajectories // Intern. Electric Propulsion Conf. IEPC-95-221. Moscow, 1995. P. 1474–1480.
  11. Petukhov V.G. Optimization of Interplanetary Trajectories for Spacecraft with Ideally Regulated Engines Using the Continuation Method // Cosmic Research. 2008. V. 46. Iss. 3. P. 219–232. https://doi.org/10.1134/S0010952508030052
  12. Petukhov V.G. Method of continuation for optimization of interplanetary low-thrust trajectories // Cosmic Research. 2012. V. 50. Iss. 3. P. 249–261. https://doi.org/10.1134/S0010952512030069
  13. Haberkorn T., Martinon P., Gergaud J. Low thrust minimum-fuel orbital transfer: a homotopic approach // J. Guidance, Control, and Dynamics. 2004. V. 27. Iss. 6. P. 1046–1060. https://doi.org/10.2514/1.4022
  14. Jiang F., Baoyin H., Li J. Practical techniques for low-thrust trajectory optimization with homotopic approach // J.Guidance, Control, and Dynamics. 2012. V. 35. Iss. 1. P. 245–258. https://doi.org/10.2514/1.52476
  15. Petukhov V., Ivanyukhin A., Popov G. et al. Optimization of finite-thrust trajectories with fixed angular distance // Acta Astronautica. 2022. V. 197. P. 354–367. https://doi.org/10.1016/j.actaastro.2021.03.012
  16. Petukhov V.G., Yoon S.W. Optimization of perturbed spacecraft trajectories using complex dual numbers. Part. 1: Theory and method // Cosmic Research. 2021. V. 59. Iss. 5. P. 401–413. https://doi.org/10.1134/S0010952521050099
  17. Dargent T. Automatic Minimum Principle Formulation for Low Thrust Optimal Control in Orbit Transfers using Complex Numbers // Proc. 21st Intern. Symp. Space flights Dynamics. 28 Sep.–2 Oct. 2009, Toulouse, France. 2009. 9 p.
  18. Dargent T. An integrated tool for low thrust optimal control orbit transfers in interplanetary trajectories // Proc. 18th Intern. Symp. Space Flight Dynamics. 11–15 Oct. 2004, Munich, Germany. 2004. ESA SP-548. P. 143.
  19. Bertrand R., Epenoy R. CNES Technical note n°147. December 2002. P. 36.

Supplementary files


Copyright (c) 2023 В.Г. Петухов, С.У. Юн