An Experimental Study of an Ion Thruster with Electrodes of an Ion-Extraction System Made of a Fine-Structure Carbon–Carbon Composite

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This article presents the results of 1000-h tests of a radiofrequency ion thruster (RFIT) with electrodes of an ion-extraction system made of carbon–carbon composite material based on the non-woven carbon frame. The quality of the surface of the thruster IES accelerating electrode being the key element of the RFIT from the lifetime point of view was assessed by visual examination and scanning electron microscopy. The maximum depth of erosion cavity on the accelerating electrode surface was determined. Electrode-surface elemental analysis was performed by the method of electron-probe microanalysis.

Sobre autores

R. Akhmetzhanov

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, 125080, Moscow, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Москва

A. Bogatyi

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, 125080, Moscow, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Москва

E. Bogachev

AO Kompozit, 141092, Korolev, Moscow oblast, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Королёв

S. Gordeev

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, 125080, Moscow, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Москва

A. Elakov

AO Kompozit, 141092, Korolev, Moscow oblast, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Королёв

D. Kashirin

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, 125080, Moscow, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Москва

Yu. Perminova

AO Kompozit, 141092, Korolev, Moscow oblast, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Королёв

G. Popov

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, 125080, Moscow, Russia

Email: ahmetzhanov1991@mail.ru
Россия, Москва

M. Cherkasova

Research Institute of Applied Mechanics and Electrodynamics, Moscow Aviation Institute, 125080, Moscow, Russia

Autor responsável pela correspondência
Email: ahmetzhanov1991@mail.ru
Россия, Москва

Bibliografia

  1. Kanev S.V., Petukhov V.G., Popov G.A., Khartov S.A. Electro-rocket ramjet thruster for compensating the aerodynamic drag of a low-orbit spacecraft // Russian Aeronautics. 2015. V. 58. Iss. 3. P. 286–291. https://doi.org/10.3103/S106879981503006X
  2. Popov G.A., Suvorov M.O., Syrin S.A., Khartov S.A. Air-Breathing ramjet electric propulsion thruster for controlling low-orbit spacecraft motion and for compensating its aerodynamic drag // Advances in the Astronautical Sciences. 2017. V. 161. P. 833–841.
  3. Erofeev A.I., Nikiforov A.P., Popov G.A. et al. Air-Breathing Ramjet Electric Propulsion for Controlling Low-Orbit Spacecraft Motion to Compensate for Aerodynamic Drag // Solar System Research. 2017. V. 51. Iss. 7. P. 639–645. https://doi.org/10.1134/S0038094617070048
  4. Gordeev S., Kanev S., Khartov S. et al. Electric propulsion system based on the air-breathing radio-frequency ion thruster using the upper atmosphere gases as propellant // Proc. 69th Intern. Astronautical Congress. Bremen, Germany, 1–5 Oct. 2018. Art. ID: 42673.
  5. Wallace N., Jameson P., Saunders C. et al. The GOCE Ion Propulsion Assembly – Lessons Learnt from the First 22 Months of Flight Operations // 32nd Intern. Electric Propulsion Conf. Wiesbaden, Germany, 11–15 Sept. 2011. Art. ID. IEPC-2011-327.
  6. Steiger C., Romanazzo M., Emanuelli P.P. et al. Flying at the edge – Extremely low altitude operations for ESA’s drag-free gravity mission GOCE // AIAA Guidance, Navigation, and Control (GNC) Conf. Boston, MA, 19–22 Aug. 2013. Art. ID. AIAA 2013-4772.
  7. Steiger C., Piñeiro J., Emanuelli P.P. Operating GOCE, the European Space Agency’s low-flying gravity mission // SpaceOps 2010 Conf. Delivering on the Dream Hosted by NASA. Huntsville, AL, 25–30 Apr. 2010. Art. ID. AIAA 2010-2125.
  8. Asmus V.V., Volgutov R.V., Deryugina V.V. et al. Satellite Technologies Applied to Hydrometeorological Problems in the Arctic Region // Russian Meteorology and Hydrology. 2019. V. 44. Iss. 4. P. 250–261. https://doi.org/10.3103/S1068373919040046
  9. Akhmetzhanov R., Loeb H.W., Cherkasova M.V., Obukhov V.A. Numerical Simulation of a System of Formation of an Intense Ion Beam From Gas Discharge Plasma of an Ion Thruster // 64th Intern. Astranautical Congress. Beijing, China, 23–27 Sept. 2013. Art. ID. IAC-13-C4.4.1.
  10. Антипов Е.А., Балашов В.В., Вебер А.В. и др. Выбор конструкционных материалов для высокочастотных ионных двигателей // Электрон. журн. Тр. МАИ. 2013. № 65. 15 с. http://trudymai.ru/published.php?ID=35964
  11. Абгарян В.К., Ахметжанов Р.В., Леб Х.В. и др. Моделирование эрозии ускоряющего электрода ионно-оптической системы ионного двигателя // Взаимодействие ионов с поверхностью: ВИП-2013: Тр. 21-й Международ. конф. 22–26 авг. 2013. Ярославль, Россия. 2013. Т. 1. С. 95–98.
  12. Antropov N.N., Akhmetzhanov R.V., Bogatyy A.V. et al. Experimental research of radio-frequency ion thruster // Thermal Engineering. 2016. V. 63. Iss. 13. P. 957–963. https://doi.org/10.1134/S0040601516130036
  13. Leiter H.J., Loeb H.W., Schartner K.-H. The RIT15 ion engines — A survey of the present state of radio frequency ion thruster technology and its future potentiality European Space Agency // Spacecraft Propulsion. 3rd Intern. Conf. 10–13 Oct. 2000, Cannes, France / ed. R.A. Harris; European Space Agency, 2001. ESASP-465. P. 423–432.
  14. Abgaryan V.K., Kruglov K.I. Thermal model of RF ion thrusters and ion sources // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2015. V. 9. Iss. 6. P. 1137–1143
  15. Li J., Qiu J., Chu Y., Zhang T. et al. Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure // Intern. J. Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engin. 2015. V. 9. Iss. 11. P. 1978–1981.
  16. Богачев Е.А., Елаков А.Б., Белоглазов А.П., Денисов Ю.А., Тимофеев А.Н. Способ изготовления пористого каркаса-основы композиционного материала: Патент РФ № 2620810. Опубл. 29.05.2017. Бюл. № 16.
  17. Goebel D., Katz I. Fundamental of electric propulsion: Ion and Hall Thrusters / Jet Propulsion Laboratory California Institute of Technology. Space and Technology Series. 2008. 493 p. https://doi.org/10.1002/9780470436448

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (320KB)
3.

Baixar (588KB)
4.

Baixar (701KB)
5.

Baixar (1MB)
6.

Baixar (57KB)
7.

Baixar (631KB)
8.

Baixar (48KB)
9.

Baixar (878KB)

Declaração de direitos autorais © Р.В. Ахметжанов, А.В. Богатый, Е.А. Богачев, С.В. Гордеев, А.Б. Елаков, Д.А. Каширин, Ю.С. Перминова, Г.А. Попов, М.В. Черкасова, 2023