Time Series of Space Observations: Analysis of Local Meteorological and Solar Series

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A range of issues related to the results of the analysis of some meteorological and solar series of satellite observations in the Kara-Dag area (Crimea) is considered. A qualitative and quantitative picture of changes in the total insolation falling on the Earth’s surface, air temperature at a height of 2 m, and the Earth’s surface temperature in Kara-Dag over the past 38 years is presented. A numerical model has been constructed that makes it possible to predict the most powerful fluctuation with a period of 1 year in the analyzed data. The following methods were used in the work: the method of wavelet analysis, statistical methods for extracting Gaussian and non-Gaussian noise, an iterative method for constructing and estimating the accuracy of model approximations. Coherent variations in the analyzed and some global geodynamic and solar time series were established using two-channel autoregressive analysis. A qualitative characteristic of the process of changing the main variations in the analyzed time series was obtained using the analysis of phase trajectories on the Poincaré plane.

About the authors

G. S. Kurbasova

Crimean Astrophysical Observatory, Russian Academy of Sciences, Katsiveli, Crimea, Russia

Email: volvach@bk.ru
Россия, Крым, п. Кацивели

A. E. Volvach

Department of Radio Astronomy and Geodynamics, Crimean Astrophysical Observatory, Russian Academy of Sciences

Email: volvach@bk.ru
Katsiveli, Crimea, 298409 Russia

L. N. Volvach

Department of Radio Astronomy and Geodynamics, Crimean Astrophysical Observatory, Russian Academy of Sciences

Author for correspondence.
Email: volvach@bk.ru
Katsiveli, Crimea, 298409 Russia

References

  1. Хаин В.Е., Халилов Э.Н. Пространственно-временные закономерности сейсмической и вулканической активности. Бургас, Science Without Borders, 2008. 304 с.
  2. Хаин В.Е. Геология на пороге новой научной революции // Природа. 1995. № 1. С. 33–51.
  3. Лобковский Л.И., Котелкин В.Д. Двухъярусная термохимическая модель конвекции и ее геодинамические следствия // Проблемы глобальной геодинамики. Коллективная монография. М.: ГЕОС, 2000. С. 29–53.
  4. Трубицын В.П. Глобальные тектонические процессы, формирующие лик Земли // Геофизика на рубеже веков. М.: ИФЗ РАН, 1999. С. 80–92.
  5. Палас П. Краткое физическое и топографическое описание Таврической области. Перевод с фр. И. Рижского. СПб: Императорская типография, 1795. 72 с.
  6. Kurbasova G.S., Volvach A.E. The insolation anomalies on the Crimean peninsula with observations from space // Proc. Microwave and Telecommunication Technology: 24th International Crimean Conference. Sevastopol. 2014. P. 1085–1086. https://doi.org/10.1109/CRMICO.2014.6959772
  7. Kurbasova G.S., Volvach A.E. Wavelet analysis of terrestrial and space measurements of local insolation // Space Science and Technology. 2014. V. 20. Iss. 4. P. 42–49. https://doi.org/10.15407/knit2014.04.042
  8. Volvach A.E., Kurbasova G.S. Secular variations of geomagnetic declination in the Karadag point and the global helio-geodynamic processes // Geofizicheskiy Zhurnal–Geophysical Journal. 2019. V. 41. Iss. 1. P. 192–199.
  9. Volvach A.E., Kurbasova G.S. Model of insolation of the earth surface in the Kara–Dag locality according to SSE data // Visnyk of Taras Shevchenko National University of Kyiv: Geology. 2019. V. 2. P. 1–58. https://doi.org/10.17721/1728-2713.85.07
  10. Volvach A.E., Kurbasova G.S., Volvach L.N. Analyis of periodical variability of insolation and soil temperature in the Crimea // Geofizicheskiy Zhurnal–Geophysical Journal. 2019. V. 23. Iss. 6. P. 195–202.
  11. Volvach A.E., Kurbasova G.S., Volvach L.N. Solar-Terrestrial Cycles in the Climatic and Geophysical Properties of Crimea // Astrophysical Bulletin. 2019. V. 74. Iss. 3. P. 331–336. https://doi.org/10.1134/S1990341319030118
  12. Haar A. Zur Theorie der orthogonalen Funktionensysteme // Mathematische Annalen. 1910. V. 69. P. 331–371.
  13. Daubechies I. Orthonormal bases of compactly supported wavelets // Communications on Pure and Applied Mathematics. 1988. V. 41. P. 909–996.
  14. Daubechies I. The wavelet transform, time–frequency localization and signal analysis // IEEE Transactions on Information Theory. 1990. V. 36. Iss 5. P. 961–1005.
  15. Farge M. Non-Gaussianity and coherent vortex simulation for two dimensional turbulence using an adaptive orthogonal wavelet basis // Phys. Fluids. 1999. V. 11. Iss. 8. P. 2187–2201.
  16. Abry P. Ondelettes et turbulence. Multirésolutions, algorithmes de décomposition, invariance d’échelles. Diderot Editeur. Paris. 1997. 268 p.
  17. Torrence C., Compo G.P. A Practical Guide to Wavelet Analysis // Bull. Am. Meteorol. Soc. 1998. V. 79. Iss. 1. P. 61–78.
  18. Marple S.L. Digital spectral analysis with applications. Englewood Cliffs. NJ. Prentice–Hall, 1987. 512 p.
  19. Marple S.L. Digital spectral analysis. Second Edition. Mineola, New York. Dover Publications, 1987. 2019. 435 p.
  20. Donoho D.L. De–noising by soft–thresholding / IEEE Trans. Information Theory. 1995. V. 41. Iss. 3. P. 613–627.https://doi.org/10.1109/18.382009
  21. Мун Ф. Хаотические колебания. М.: Мир, 1990. 311 с.
  22. Авсюк Ю.Н. Глобальные изменения среды и климата в сопоставлении с приливной моделью эволюции системы Земля–Луна // Геофизика на рубеже веков. М.: ИФЗ РАН, 1999. С. 93–106.
  23. Bostrom R.C. Tectonic Consequences of the Earth’s rotation. Oxford: Oxford University Press, 2000.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (959KB)
3.

Download (128KB)
4.

Download (601KB)
5.

Download (711KB)
6.

Download (776KB)
7.

Download (894KB)
8.

Download (1MB)
9.

Download (375KB)
10.

Download (2MB)
11.

Download (581KB)
12.

Download (190KB)

Copyright (c) 2023 Г.С. Курбасова, А.Е. Вольвач, Л.Н. Вольвач