Energy Spectra of 3He, 4He, C, O, and Fe Suprathermal Ions per 1 AU in Particle Flows from Coronal Holes in the 23rd and 24th Solar Cycles
- Authors: Zeldovich M.A.1, Logachev Y.I.1
-
Affiliations:
- Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia
- Issue: Vol 61, No 1 (2023)
- Pages: 3-9
- Section: Articles
- URL: https://kld-journal.fedlab.ru/0023-4206/article/view/672689
- DOI: https://doi.org/10.31857/S0023420623010065
- EDN: https://elibrary.ru/FIHUMH
- ID: 672689
Cite item
Abstract
The energy spectra of ions 3He, 4He, C, O and Fe with energies of 0.04–2 MeV/nucleon were studied at 1 AU in solar-wind streams from near-equatorial coronal holes during the decline of solar activity in cycle 23 according to the information of the ULEIS, SWICS, and SWEPAM instruments installed onboard the ACE spacecraft. The results of this work show that suprathermal ions from coronal holes are Maxwellian solar-wind ions accelerated on the Sun and/or in interplanetary space and form a high-energy contribution to solar-wind ions (a suprathermal “tail” in the energy distribution of solar-wind ions). The energy spectra of accelerated “tail” ions have different dependences on energy, which indicates different mechanisms of their acceleration. The relationship between the intensity of suprathermal ions and the speed of the solar wind indicates the effectiveness of the acceleration of Maxwellian solar-wind ions.
About the authors
M. A. Zeldovich
Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia
Email: ms.zeldovich@mail.ru
Россия, Москва
Yu. I. Logachev
Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia
Author for correspondence.
Email: ms.zeldovich@mail.ru
Россия, Москва
References
- Neugebauer M., Snyder C.W. Solar Plasma Experiment // Science. 1962. V. 138. P. 1095–1097. https://doi.org/10.1126/science.138.3545.1095-a
- Neugebauer M., Snyder C.W. Mariner 2 Observations of the Solar Wind: 1. Average Properties // J. Geophys. Res. 1966. V. 71. P. 4469–4484. https://doi.org/10.1029/jz071i019p04469
- Gosling J., Pizzo V. Formation and Evolution of Corotating Interaction Regions and Their Three Dimensional Structure // Space Sci. Rev. 1999. V. 89. P. 21–52. https://doi.org/10.1023/a:1005291711900
- Barnes C.W., Simpson J.A. Evidence for interplanetary acceleration of nucleons in corotating interaction regions // Astrophysical Journal. 1976. L. 210. 91B. https://doi.org/10.1086/182311
- McComas D.J., Bame S.J., Barraclough B.L. et al. Ulysses Return to the Slow Solar Wind // Geophys.Res. Lett. 1998. V. 25. P. 1–4. https://doi.org/10.1029/97gl03444
- Marsden R.G. Ulysses Explores the South Pole of the Sun // ESA Bulletin. 1995. № 82. P. 48–55.
- Тверской Б.А. Перенос и ускорение заряженных частиц в магнитосфере Земли // Геомагнетизм и аэрономия. 2008. С. 751–758.
- Тверской Б.А. Динамика радиационных поясов Земли. Москва. Наука. 1968.
- Fisk L.A., Gloeckler G. Acceleration and Composition of Solar Wind Suprathermal Tails // Space Sci. Rev. 2007. V. 130. P. 153. https://doi.org/10.1007/s11214-007-9180-8
- Cohen C.M.S., Christian E.R., Cummings A.C. et al. Energetic Particle Increases Associated with Stream Interaction Regions // The Astrophysical Journal Supplement Series. 2020. V. 246. № 2. P. 10. https://doi.org/10.3847/1538-4365/ab4c38
- Ebert R.W., Dayeh M.A., Desai M.I., Mason G.M. Corotating Interaction Region Associated Suprathermal Helium Ion Enhancements at 1 AU: Evidence for Local Acceleration at the Compression Region Trailing Edge // Astrophysical J. 2012. V. 749. № 1. P. 73–86. https://doi.org/10.1088/0004-637X/749/1/73
- Bucık R., Innes D.E., Mall U. et al. Multi-Spacecraft Observations of Recurrent 3he-Rich Solar Energetic Particles // Astrophysical Journal. 2014. V. 786. P. 71–83. https://doi.org/10.1088/0004-637X/786/1/7
- Bucık R., Innes D.E., Mall U. et al. Multi-Spacecraft Observations of Recurrent 3he-Rich Solar Energetic Particles // Статья архив. 2018. arXiv:1403.4856v1 [astro-ph.SR].
- Viall N.M., DeForest C.E., Kepko L. Mesoscale Structure in the Solar Wind // Front. Astron. Space Sci. 2021. V. 8. https://doi.org/10.3389/fspas.2021.735034
- Зельдович М.А., Логачев Ю.И., Сурова Г.М. и др. Надтепловые ионы в потоках солнечного ветра из корональных дыр на 1 а.е. // Астрон. журн. 2016. Т. 93. С. 675.
- Zeldovich M.A., Kecskeméty K., Logachev Yu.I. Suprathermal Ions from Coronal Holes at 1 AU in Solar Cycles 23 and 24: Dependence of ion abundances on solar wind speed // 2021. Monthly Notices of the Royal Astronomical Society. V. 502. № 2. P. 2961–2969.
- Lepri S.T., Landi E., Zurbuchen T.H. Solar Wind Heavy Ions Over Solar Cycle 23: Ace/Swics Measurements // Astrophysical Journal. 2013. V 768. № 1. P. 94–107. https://doi.org/10.1088/0004-637X/768/1/94
- Zel’dovich M.A., Ishkov V.N., Logachev Yu.I., Kecskemety K. Ion abundances of low-energy quiet period particle fluxes at 1 AU // Bull. Russ. Acad. Sci.: Phys. 2011. V. 75. № 6. P. 776.
- Зельдович М.А., Логачев Ю.И., Сурова Г.М. Энергетические спектры и относительное содержание ионов C, O и Fe на 1 а.е. при спокойном Солнце // Астрон. журн. 2011. Т. 88. № 2. С. 409.
- Zeldovich M.A., Logachev Yu.I., Surova G.M., Kecskemety K. Suprathermal Ions in Quiescent Periods at 1 AU in the 23rd and 24th Solar-Activity Cycles // Astronomy Reports. 2014. V 58. № 6. P 399-405. https://doi.org/10.1134/S1063772914050072
- Зельдович М.А., Логачев Ю.И. надтепловые ионы 4He, O и Fe НА 1 а. е. В спокойное время в 2006–2012 гг. // Известия РАН. Серия физическая. 2017. Т. 81. № 2. С. 159–161. https://doi.org/10.7868/S0367676517020478
- Зельдович М.А., Логачев Ю.И., Кечкемети К. Временные вариации потоков надтепловых ионов и их относительное содержание на 1 а.е. в 1998-2017 // Астрономический Журнал. 2019. Т. 96. № 6. С. 523–528. https://doi.org/10.1134/S0004629919060070
- Lee C.O., Luhmann J.G., de Pater I. et al. Organization of Energetic Particles by the Solar Wind Structure During the Declining to Minimum Phase of Solar Cycle 23 // Solar Phys. 2010. V. 263. P. 239–261. https://doi.org/10.1007/s11207-010-9556-x
- Zhao L., Landi E., Fisk L.A. et al. The coherent relation between the solar wind proton speed and O7+/O6+ ratio and its coronal sources // AIP Conference Proceedings. 2016. V. 1720. 020007. https://doi.org/10.1063/1.4943808
- Fisk L.A., Lee M.A. Shock acceleration of energetic particles in corotating interaction regions in the solar wind // Astrophysical Journal. 1980. Part 1. V. 237. P. 6. https://doi.org/10.1086/157907
- Fisk L.A., Gloeckler G. Particle Acceleration in the Heliosphere: Implications for Astrophysics // Space Science Reviews. 2012. V. 173. № 1–4. P. 433–458. https://doi.org/10.1007/s11214-012-9899-8
- Fisk L.A., Gloeckler G. The case for a common spectrum of particles accelerated in the heliosphere: Observations and theory // Journal of Geophysical Research: Space Physics. 2014. V. 119. № 11. P. 8733–8749.https://doi.org/10.1002/2014JA020426
Supplementary files
