Fe Ion Composition in Solar-Wind Streams in the Solar Corona and Heliosphere
- 作者: Goryaev F.F.1, Slemzin V.A.1, Rodkin D.G.1, Shugai Y.S.2
-
隶属关系:
- Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
- Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia
- 期: 卷 61, 编号 1 (2023)
- 页面: 10-20
- 栏目: Articles
- URL: https://kld-journal.fedlab.ru/0023-4206/article/view/672690
- DOI: https://doi.org/10.31857/S002342062301003X
- EDN: https://elibrary.ru/FICEMK
- ID: 672690
如何引用文章
详细
Analysis of the distributions of Fe ions over the stages of ionization in solar-wind (SW) plasma provides valuable information on the formation of SW streams and plasma heating processes, as well as for identifying SW sources on the Sun. When passing SW plasma through the corona, its ion composition evolves and finally “freezes” at distances of the order of several solar radii from the solar surface, remaining further practically unchanged in the heliosphere. This makes it possible to obtain information about the physical conditions in its source and the solar corona from the SW charge state. Average charge QFe, which is usually used to characterize the distributions of Fe ions, does not take into account all the features of the evolution of the ion composition, which does not allow one to extract more detailed information about the state of SW plasma. In this study, to describe the charge state of Fe ions, three parameters q4, q8, and q12 are introduced, which characterize the relative fractions of ions with charges Z = 0–7, 8–11, and 12–20, respectively, and conditionally correspond to “cold,” “medium,” and “hot” SW plasma components. According to the measurements of the Fe ion composition in 2010 on the STEREO-A spacecraft, the characteristic values of these parameters for different types of SW streams are given. The problem of modeling ion distributions in SW plasma based on diagnostic data on the parameters of coronal sources is considered. Using the example of the event associated with coronal-mass ejection on August 18, 2010, it is shown that the parameters of the charge state of Fe ions calculated from the model distributions are in good agreement within errors with the measurement data.
作者简介
F. Goryaev
Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
Email: goryaev_farid@mail.ru
Россия, Москва
V. Slemzin
Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
Email: goryaev_farid@mail.ru
Россия, Москва
D. Rodkin
Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
Email: goryaev_farid@mail.ru
Россия, Москва
Yu. Shugai
Skobeltsyn Institute of Nuclear Physics, Moscow State University, 119991, Moscow, Russia
编辑信件的主要联系方式.
Email: goryaev_farid@mail.ru
Россия, Москва
参考
- Gringauz K.I. The structure of the ionized gas envelope of Earth from direct measurements in the USSR of local charged particle concentrations // Planetary and Space Science. 1963. V. 11. P. 281–296. https://doi.org/10.1016/0032-0633(63)90030-8
- Snyder C.W., Neugebauer M. Interplanetary solar-wind measurements by Mariner II. Space Research Conference, 1964.
- Schwenn R. Large-Scale Structure of the Interplanetary Medium / Eds.: Schwenn R., Marsch E. // Physics of the Inner Heliosphere I, XI Berlin, Germany: Springer-Verlag, 1990. P. 99. https://doi.org/10.1007/978-3-642-75361-9_3
- McComas D.J., Barraclough B.L., Funsten H.O. et al. Solar wind observations over Ulysses’ first full polar orbit // J. Geophys. Res. 2000. V. 105. P. 10419. https://doi.org/10.1029/1999JA000383
- McComas D.J., Goldstein R., Gosling J.T., Skoug R.M. Ulysses’ Second Orbit: Remarkably Different Solar Wind // Space Sci. Rev. 2001. V. 97. P. 99. https://doi.org/10.1023/A:1011826111330
- Wang Y.-M., Sheely N.R., Jr. Sources of the Solar Wind at Ulysses during 1990-2006 // Astrophys. J. 2006. V. 653. P. 708. https://doi.org/10.1086/508929
- von Steiger R., Schwadron N.A., Fisk L.A. et al. Composition of quasi-stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer // J. Geophys. Res. 2000. V. 105. P. 27217. https://doi.org/10.1029/1999JA000358
- Richardson I.G. Identification of Interplanetary Coronal Mass Ejections at Ulysses Using Multiple Solar Wind Signatures // Solar Phys. 2014. V. 289. P. 3843. https://doi.org/10.1007/s11207-014-0540-8
- Gloeckler G., Cain J., Ipavich F.M. et al. Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft // Space Sci. Rev. 1998. V. 86. P. 497. https://doi.org/10.1023/A:1005036131689
- Galvin A.B., Kistler L.M., Popecki M.A. et al. The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories // Space Sci. Rev. 2008. V. 136. P. 437. https://doi.org/10.1007/s11214-007-9296-x
- Perrone D., Bruno R., D’Amicis R. et al. Coherent Events at Ion Scales in the Inner Heliosphere: Parker Solar Probe Observations during the First Encounter // Astrophysical Journal. 2020. V. 905:142. https://doi.org/10.3847/1538-4357/abc480
- Mason G.M., Ho G.C., Allen R.C. et al. Quiet-time low energy ion spectra observed on Solar Orbiter during solar minimum // Astronomy & Astrophysics. 2021. V. 656. Article id. L5. https://doi.org/10.1051/0004-6361/202140540
- Hundhausen A.J., Gilbert H.E., Bame S.J. Ionization state of the interplanetary plasma // J. Geophys. Res. 1968. V. 73. P. 5485. https://doi.org/10.1029/JA073i017p05485
- Owocki S.P., Holzer T.E., Hundhausen A.J. The solar wind ionization state as a coronal temperature diagnostic // Astrophysical J. 1983. V. 275. P. 354–366. https://doi.org/10.1086/161538
- Zurbuchen T.H., Richardson I.G. In-situ solar wind magnetic field signatures of interplanetary coronal mass ejections // Space Science Reviews. 2006. V. 123. P. 31–43. https://doi.org/10.1007/s11214-006-9010-4
- Landi E., Gruesbeck J.R., Lepri S.T. et al. Charge State Evolution in the Solar Wind. II. Plasma Charge State Composition in the Inner Corona and Accelerating Fast Solar Wind // Astrophysical J. 2012. V. 761. Is. 1. Article id. 48. https://doi.org/10.1088/0004-637X/761/1/48
- Landi E., Gruesbeck J.R., Lepri S.T. et al. Charge State Evolution in the Solar Wind. Radiative Losses in Fast Solar Wind Plasmas // Astrophysical J. 2012. V. 758. Is. 1. Article id. L21. https://doi.org/10.1088/2041-8205/758/1/L21
- Landi E., Gruesbeck J.R., Lepri S.T., Zurbuchen T.H. New Solar Wind Diagnostic Using Both in Situ and Spectroscopic Measurements // Astrophysical J. 2012. V. 750. Is. 2. Article id. 159. https://doi.org/10.1088/0004-637X/750/2/159
- Landi E., Alexander R.L., Gruesbeck J.R. et al. Carbon Ionization Stages as a Diagnostic of the Solar Wind // Astrophysical J. 2012. V. 744. № 2. Article id. 100. https://doi.org/10.1088/0004-637X/744/2/100
- Gruesbeck J.R., Lepri S.T., Zurbuchen T.H., Antiochos S.K. Constraints on Coronal Mass Ejection Evolution from in Situ Observations of Ionic Charge States // Astrophysical J. 2011. V. 730. № 2. Article id. 103. https://doi.org/10.1088/0004-637X/730/2/103
- Lepri S.T., Laming J.M., Rakowski C.E., von Steiger R. Spatially Dependent Heating and Ionization in an ICM-E Observed by Both ACE and Ulysses // Astrophysical J. V. 760. Is. 2. Article id. 105. https://doi.org/10.1088/0004-637X/760/2/105
- Rodkin D., Goryaev F., Pagano P. et al. Origin and Ion Charge State Evolution of Solar Wind Transients during 4–7 August 2011 // Solar Physics. 2017. V. 292. № 7. Article id. 90. https://doi.org/10.1007/s11207-017-1109-0
- Grechnev V.V., Kochanov A.A., Uralov A.M. et al. Development of a Fast CME and Properties of a Related Interplanetary Transient // Solar Physics. 2019. V. 294. Article id. 139. https://doi.org/10.1007/s11207-019-1529-0
- Slemzin V., Goryaev F., Rodkin D. Formation of Coronal Mass Ejection and Posteruption Flow of Solar Wind on 2010 August 18 Event // Astrophysical J. 2022. V. 929. Id. 146. https://doi.org/10.3847/1538-4357/ac5901
- Goryaev F., Slemzin V., Rodkin D. Identification of Hot Plasma Anomalies in Solar Wind Using Fe Ion Charge Distributions // Astrophysical J. Lett. 2020. V. 905. Is. 2. Article id. L17. https://doi.org/10.3847/2041-8213/abcc76
- Lopez R.E. Solar cycle invariance in solar wind proton temperature relationships // J. Geophys. Res. 1987. V. 92. P. 11189–11194. https://doi.org/10.1029/JA092iA10p11189
- Richardson I.G., Cane H.V. Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies // J. Geophys. Res. 2004. V. 109. A09104. https://doi.org/10.1029/2004JA010598
- Ko Y.-K., Fisk L.A., Geiss J. et al. An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole // Solar Physics. 1997. V. 171. P. 345–361. https://doi.org/10.1023/A:1004943213433
- Hannah I.G., Kontar E.P. Differential emission measures from the regularized inversion of Hinode and SDO data // Astronomy&Astrophysics. 2012. V. 539. Article id. A146. https://doi.org/10.1051/0004-6361/201117576
- Plowman J., Kankelborg C., Martens P. Fast Differential Emission Measure Inversion of Solar Coronal Data // Astrophysical J. 2013. V. 771. № 1. Article id. 2. https://doi.org/10.1088/0004-637X/771/1/2
- Plowman J., Caspi A. A Fast, Simple, Robust Algorithm for Coronal Temperature Reconstruction // Astrophysical J. 2020. V. 905. № 1. Article id. 17. https://doi.org/10.3847/1538-4357/abc260
- Aschwanden M.J., Boerner P., Caspi A. et al. Benchmark Test of Differential Emission Measure Codes and Multi-thermal Energies in Solar Active Regions // Solar Physics. 2015. V. 290. P. 2733–2763. https://doi.org/10.1007/s11207-015-0790-0
- Cheng X., Zhang J., Saar S.H. et al. Differential Emission Measure Analysis of Multiple Structural Components of Coronal Mass Ejections in the Inner Corona // Astrophysical J. 2012. V. 761. № 1. Article id. 62. https://doi.org/10.1088/0004-637X/761/1/62
- Saqri J., Veronig A.M., Heinemann S.G. et al. Differential Emission Measure Plasma Diagnostics of a Long-Lived Coronal Hole // Solar Physics. 2020. V. 295. № 1. Article id. 6. https://doi.org/10.1007/s11207-019-1570-z
- Lynch B.J., Reinard A.A., Mulligan T. et al. Ionic Composition Structure of Coronal Mass Ejections in Axisymmetric Magnetohydrodynamic Models // Astrophysical J. 2011. V. 740. № 2. Article id. 112. https://doi.org/10.1088/0004-637X/740/2/112
补充文件
