Structural Reorganization of Cell Membrane Models Caused by the Anticancer Antibiotic Doxorubicin
- Authors: Novikova N.N.1, Kovalchuk M.V.1, Rogachev A.V.1, Malakhova Y.N.1,2, Kotova Y.O.3, Gelperina S.E.3, Yakunin S.N.1
- 
							Affiliations: 
							- National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
- MIREA—Rusian Technological University, Moscow, Russia
- Mendeleev University of Chemical Technology, 125047, Moscow, Russia
 
- Issue: Vol 68, No 6 (2023)
- Pages: 990-1001
- Section: ПОВЕРХНОСТЬ, ТОНКИЕ ПЛЕНКИ
- URL: https://kld-journal.fedlab.ru/0023-4761/article/view/673326
- DOI: https://doi.org/10.31857/S0023476123600842
- EDN: https://elibrary.ru/AAUWIR
- ID: 673326
Cite item
Abstract
The molecular mechanisms of the interaction of anticancer antibiotic doxorubicin with lipid cell membrane models have been investigated using grazing incidence X-ray diffraction (XRD) and X-ray reflectivity (XRR). The model systems were monolayers of four types of phospholipids, related to the main components of animal cell membranes. New information on the processes of damage of phospholipid monolayer lattice caused by doxorubicin is obtained. It is established that the action of doxorubicin on anionic phospholipid monolayers is determined by the electrostatic interaction: positively charged doxorubicin molecules are incorporated between negatively charged phospholipid functional groups. In the case of neutral phospholipids the key role belongs to the hydrophobic interaction: doxorubicin molecules are coordinated with phospholipid hydrocarbon tails in disordered regions.
About the authors
N. N. Novikova
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
														Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва						
M. V. Kovalchuk
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
														Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва						
A. V. Rogachev
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
														Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва						
Yu. N. Malakhova
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; MIREA—Rusian Technological University, Moscow, Russia
														Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва; Россия, Москва						
Yu. O. Kotova
Mendeleev University of Chemical Technology, 125047, Moscow, Russia
														Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва						
S. E. Gelperina
Mendeleev University of Chemical Technology, 125047, Moscow, Russia
														Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва						
S. N. Yakunin
National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia
							Author for correspondence.
							Email: nn-novikova07@yandex.ru
				                					                																			                												                								Россия, Москва						
References
- Brezesinski G., Möhwald H. // Adv. Colloid Int. Sci. 2003. V. 100. P. 563. https://doi.org/10.1016/s0001-8686(02)00071-4
- Stefaniu C., Brezesinski G. // Curr. Opin. Colloid Int. Sci. 2014. V. 19. P. 216. https://doi.org/10.1016/j.cocis.2014.01.004
- Kaganer V.M., Mohwald H., Dutta P. // Rev. Modern Phys. 1999. V. 71. № 3. P. 779. https://doi.org/10.1103/RevModPhys.71.779
- Daillant J., Gibaud A. X-ray and Neutron Reflectivity: Principles and Applications. Berlin: Springer, 2009. 348 p.
- Новикова Н.Н., Ковальчук М.В., Юрьева Э.А. и др. // Кристаллография. 2012. Т. 57. № 5. С. 727.
- Novikova N., Kovalchuk M., Konovalov O. et al. // BioNanoSci. 2021. V. 10. P. 618. https://doi.org/10.1007/s12668-020-00742-0
- Arcamone F., Cassinelli G., Fantini G. et al. // Biotechnol. Bioeng. 2000. V. 67. P. 704. https://doi.org/10.1002/bit.260110607
- Thorn C.F., Oshiro C., Marsh S. et al. // Pharmacogenet. Genomics. 2011. V. 21. P. 440. https://doi.org/10.1097/FPC.0b013e32833ffb56
- Sritharan S., Sivalingam N.A. // Life Sci. 2021. V. 278. P. 119527. https://doi.org/10.1016/j.lfs.2021.119527
- Asensio-L’opez M.C., Soler F., Pascual-Figal D. et al. // PLOS One. 2017. V. 12. P. e0172803. https://doi.org/10.1371/journal.pone.0172803
- Alves A.C., Magarkar A., Horta M. et al. // Sci. Rep. 2017. V. 7. P. 6343. https://doi.org/10.1038/s41598-017-06445-z
- Peetla C., Bhave R., Vijayaraghavalu S. et al. // Mol. Pharmaceutics. 2010. V. 7. P. 2334. https://doi.org/10.1021/mp100308n
- Dadhich R., Kapoor S. // Mol. Cell. Biochem. 2022. V. 477. P. 2507. https://doi.org/10.1007/s11010-022-04459-4
- Ramu A., Glaubiger D., Magrath I.T. et al. // Cancer Res. 1983. V. 43. P. 5533.
- Speelmans G., Staffhorst R.W., de Kruijff B. et al. // Biochemistry. 1994. V. 33. P. 13761. https://doi.org/10.1021/bi00250a029
- Chen L., Alrbyawi H., Poudel I. et al. // AAPS PharmSciTech. 2019. V. 20. P. 99. https://doi.org/10.1208/s12249-019-1316-0
- Alves A., Nunes C., Lima J. et al. // Colloids Surf. B. 2017. V. 160. P. 610. https://doi.org/10.1016/j.colsurfb.2017.09.058
- Yacoub T.J., Reddy A.S., Szleifer I. // Biophys. J. 2011. V. 101. P. 378. https://doi.org/10.1016/j.bpj.2011.06.015
- Hou Y., Li J., Liu X. et al. // Chem. Phys. 2021. V. 541. P. 111036.
- Matyszewska D., Moczulska S. // Electrochim. Acta. 2018. V. 280. P. 229. https://doi.org/10.1016/j.electacta.2018.05.119
- Gaber M.H., Ghannam M.M., Ali S.A. et al. // Biophys. Chem. 1998. V. 70. P. 223. https://doi.org/10.1016/S0301-4622(97)00125-7
- Marsh D. // Biochim. Biophys. Acta. 1996. V. 1286. P. 183. https://doi.org/10.1016/S0304-4157(96)00009-3
- Zameshin A., Makhotkin I.A., Yakunin S.N. et al. // J. Appl. Cryst. 2016. V. 49. P. 1300. https://doi.org/10.1107/S160057671601044X
- Kondratev O.A., Makhotkin I.A., Yakunin S.N. // Appl. Surf. Sci. 2022. V. 574. P. 151573. https://doi.org/10.1016/j.apsusc.2021.151573
- Malakhova Y.N., Korovin A.N., Lapkin D.A. et al. // Soft Matter. 2017. V. 13. P. 7300. https://doi.org/10.1039/c7sm01773a
- Windt D.L. // Comput. Phys. IEEE Comput. Sci. Eng. 1998. V. 12. P. 360. https://doi.org/10.1063/1.168689
- Xiao-Lin Zh., Sow-Hsin Ch. // Phys. Rev. E. 1993. V. 47. P. 3174. https://doi.org/10.1103/PhysRevE.47.3174
- Селеменев В.Ф., Рудакова Л.В., Рудаков О.Б. и др. Фосфолипиды на фоне природных матриц. Воронеж: Научная книга, 2020. 318 с.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					







