CO2 Emission by Soils of the Ecotone Zone in the North of Western Siberia
- Authors: Goncharova O.Y.1, Matyshak G.V.1, Timofeeva M.V.1,2, Chuvanov S.V.1,2, Tarkhov M.O.1, Isaeva A.A.1,3
-
Affiliations:
- Lomonosov Moscow State University
- Dokuchaev Soil Science Institute
- Israel Institute of Global Climate and Ecology
- Issue: No 9 (2023)
- Pages: 1034-1048
- Section: ДЫХАНИЕ ПОЧВ В ПРИРОДНЫХ ЦЕНОЗАХ
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/665816
- DOI: https://doi.org/10.31857/S0032180X23600336
- EDN: https://elibrary.ru/QRTQQL
- ID: 665816
Cite item
Abstract
The study area in the North of Western Siberia is located at the southern limit of the distribution of surficial permafrost in the ecotone zone on the border of taiga and southern tundra. Area is characterized by the contrasting landscapes: pine forests with Albic Podzol; palsa with Histic Oxyaquic Turbic Cryosol and bog ecosystems with Fibric Histosol. The objectives of the study included evaluation the values of CO2 emission (SR) by soils of key landscapes in the growing seasons of 2019–2022, and evaluation the factors of spatial variability of this indicator and its interannual variability. The study included analysis of the RS database (static closed chamber method) and soil hydrothermal parameters for four years in August. In the absence of trends in changing climatic parameters over the past 10 years, a gradual increase in soil temperature in all landscapes and an increase in the depth of thawing in palsa were observed. These changes were not accompanied by significant changes in the SR value. It averaged from 485 to 540 mgCO2/(m2 h) in forest ecosystems, from 150 to 255 mgCO2/(m2 h) in the peat-bog complex with high coefficients of spatial variability. High values of SR in forest ecosystems are determined by a favorable hydrothermal regime, high reserves of root biomass, and good water-physical properties. Part of the CO2 produced by palsa soils is transported by supra-permafrost waters and released from the surface of bog soils. Soil temperature, regulated by seasonal thawing, was a significant predictor of the spatial variability of SR on the soils of the palsa-bog complex.
About the authors
O. Yu. Goncharova
Lomonosov Moscow State University
Author for correspondence.
Email: goncholgaj@gmail.com
Russia, 119991, Moscow
G. V. Matyshak
Lomonosov Moscow State University
Email: goncholgaj@gmail.com
Russia, 119991, Moscow
M. V. Timofeeva
Lomonosov Moscow State University; Dokuchaev Soil Science Institute
Email: goncholgaj@gmail.com
Russia, 119991, Moscow; Russia, 119017, Moscow
S. V. Chuvanov
Lomonosov Moscow State University; Dokuchaev Soil Science Institute
Email: goncholgaj@gmail.com
Russia, 119991, Moscow; Russia, 119017, Moscow
M. O. Tarkhov
Lomonosov Moscow State University
Email: goncholgaj@gmail.com
Russia, 119991, Moscow
A. A. Isaeva
Lomonosov Moscow State University; Israel Institute of Global Climate and Ecology
Email: goncholgaj@gmail.com
Russia, 119991, Moscow; Russia, 107258, Moscow
References
- Булыгина О.Н., Разуваев В.Н., Трофименко Л.Т., Швец Н.В. Описание массива данных среднемесячной температуры воздуха на станциях России. Св-во о гос. регистрации базы данных № 2014621485 http://meteo.ru/data/156-temperature#описание-массива-данных.
- Геокриология СССР: монография. Западная Сибирь. М., 1989. Вып. Недра. 453 с.
- Гончарова О.Ю., Матышак Г.В., Бобрик А.А., Петров Д.Г., Тархов М.О., Удовенко М.М. Вклад климатических факторов в формирование температурных режимов почв прерывистой криолитозоны северной тайги Западной Сибири // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. № 87. С. 39–54. https://doi.org/10.19047/0136-1694-2017-87-39-54
- Гончарова О.Ю., Матышак Г.В., Бобрик А.А., Тимофеева М.В., Сефилян А.Р. Оценка вклада корневого и микробного дыхания в общий поток СО2 из торфяных почв и подзолов севера Западной Сибири методом интеграции компонентов // Почвоведение. 2019. № 2. С. 234–245. https://doi.org/10.1134/S0032180X19020059
- Димо В. Тепловой режим почв СССР. М., 1972. Вып. Колос. 360 с.
- Добровольский Г.В. Педосфера – оболочка жизни планеты Земля // Биосфера. 2009. Т. 1. № 1. С. 6–14.
- Карелин Д.В., Азовский А.И., Куманяев А.С., Замолодчиков Д.Г. Значение пространственного и временно́го масштаба при анализе факторов эмиссии СО2 из почвы в лесах Валдайской возвышенности // Лесоведение. 2019. № 1. С. 29–37. https://doi.org/10.1134/S0024114819010078
- Классификация и диагностика почв России. Смоленск: Изд-во Ойкумена, 2004. 341 с.
- Кудеяров В.Н. Современное состояние углеродного баланса и предельная способность почв к поглощению углерода на территории России // Почвоведение. 2015. Т. 2015. № 9. С. 1049–1060. https://doi.org/10.7868/S0032180X15090087
- Кудеяров В.Н. Почвенные источники эмиссии углекислого газа на территории России // Круговорот углерода на территории России. М., 1999. С. 165–201.
- Матышак Г.В., Богатырев Л.Г., Гончарова О.Ю., Бобрик А.А. Особенности развития почв гидроморфных экосистем северной тайги Западной Сибири в условиях криогенеза // Почвоведение. 2017. № 10. С. 1155–1164. https://doi.org/10.7868/S0032180X17100069
- Полевые и лабораторные методы исследования физических свойств и режимов почв / Под ред. Шейна Е.В. М.: Изд-во Моск. ун-та, 2001. 200 с.
- Смагин А.В. Газовая фаза почв. М.: Изд-во МГУ, 2005. 301 с.
- Тимофеева М.В., Гончарова О.Ю., Матышак Г.В., Чуванов С.В. Потоки углерода в экосистеме торфяно-болотного комплекса криолитозоны Западной Сибири // Геосферные исследования. 2022. № 3. С. 109–125. https://doi.org/10.17223/25421379/24/7
- Astakhov V., Nazarov D. Correlation of Upper Pleistocene sediments in northern West Siberia // Quaternary Sci. Rev. 2010. V. 29. № 25–26. P. 3615–3629. https://doi.org/10.1016/j.quascirev.2010.09.001
- Bäckstrand K., Crill P.M., Jackowicz-Korczyñski M., Mastepanov M., Christensen T.R., Bastviken D. Annual carbon gas budget for a subarctic peatland, Northern Sweden // Biogeosciences. 2010. V. 7. P. 95–108. https://doi.org/10.5194/bg-7-95-2010
- Ball B.A., Virginia R.A., Barrett J.E., Parsons A.N., Wall D.H. Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils // Soil Biology and Biochemistry. 2009. V. 41. P. 1510–1517. https://doi.org/10.1016/j.soilbio.2009.04.011
- Bond-Lamberty B., Thomson A. A global database of soil respiration data // Biogeosciences. 2010. V. 7. P. 1915–1926. https://doi.org/10.5194/bg-7-1915-2010
- Cai Y., Sawada K., Hirota M. Spatial Variation in Forest Soil Respiration: A Systematic Review of Field Observations at the Global Scale // SSRN J. 2023. V. 874. P. 162348. https://doi.org/10.1016/j.scitotenv.2023.162348
- Dagg J., Lafleur P. Vegetation Community, Foliar Nitrogen, and Temperature Effects on Tundra CO2 Exchange across a Soil Moisture Gradient // Arctic, Antarctic, and Alpine Research. 2011. V. 43. P. 189–197. https://doi.org/10.1657/1938-4246-43.2.189
- Estop-Aragonés C., Czimczik C.I., Heffernan L., Gibson C., Walker J.C., Xu X., Olefeldt D. Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst // Environ. Res. Lett. 2018. V. 13. P. 085002. https://doi.org/10.1088/1748-9326/aad5f0
- Falloon P., Jones C.D., Ades M., Paul K. Direct soil moisture controls of future global soil carbon changes: An important source of uncertainty: soil moisture and soil carbon // Global Biogeochem. Cycles. 2011. V. 25. P. n/a-n/a. https://doi.org/10.1029/2010GB003938
- Goncharova O.Yu., Matyshak G.V., Bobrik A.A., Petrov D.G., Tarkhov M.O., Udovenko M.M. The Input of the Climatic Factors in the Temperature Regime of Soils of Discontinuous Permafrost of Northern Taiga of Western Siberia // DSB. 2017. P. 39–54. https://doi.org/10.19047/0136-1694-2017-87-39-54
- Goncharova O.Yu., Matyshak G.V., Epstein H.E., Sefilian A.R., Bobrik A.A. Influence of snow cover on soil temperatures: Meso- and micro-scale topographic effects (a case study from the northern West Siberia discontinuous permafrost zone) // Catena. 2019. V. 183. P. 104224. https://doi.org/10.1016/j.catena.2019.104224
- Hartley I.P., Ineson P. Substrate quality and the temperature sensitivity of soil organic matter decomposition // Soil Biol. Biochem. 2008. V. 40. P. 1567–1574. https://doi.org/10.1016/j.soilbio.2008.01.007
- Jauhiainen J., Alm J., Bjarnadottir B., Callesen I., Christiansen J.R., Clarke N., Dalsgaard L., He H. et al. Reviews and syntheses: Greenhouse gas exchange data from drained organic forest soils – a review of current approaches and recommendations for future research // Biogeosciences. 2019. V. 16. P. 4687–4703. https://doi.org/10.5194/bg-16-4687-2019
- Karelin D., Goryachkin S., Zazovskaya E., Shishkov V., Pochikalov A., Dolgikh A., Sirin A., Suvorov G., Badmaev N., Badmaeva N., Tsybenov Y., Kulikov A., Danilov P., Savinov G., Desyatkin A., Desyatkin R., Kraev G. Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: Controls on spatial variability // Geoderma Regional. 2020. V. 22. P. e00290. https://doi.org/10.1016/j.geodrs.2020.e00290
- Kirschbaum M. The temperature dependence of organic-matter decomposition—still a topic of debate // Soil Biol. Biochem. 2006. V. 38. P. 2510–2518. https://doi.org/10.1016/j.soilbio.2006.01.030
- Klene A.E., Nelson F.E., Shiklomanov N.I., Hinkel K.M. The N-factor in Natural Landscapes: Variability of Air and Soil-Surface Temperatures, Kuparuk River Basin, Alaska, U.S.A. // Arctic, Antarctic, and Alpine Res. 2001. V. 33. P. 140–148. https://doi.org/10.2113/gscpgbull.63.2.192
- Lagomarsino A., Agnelli A.E. Influence of vegetation cover and soil features on CO2, CH4 and N2O fluxes in northern Finnish Lapland // Polar Sci. 2020. V. 24. P. 100531. https://doi.org/10.1016/j.polar.2020.100531
- Liang C., Schimel J.P., Jastrow J.D. The importance of anabolism in microbial control over soil carbon storage // Nat Microbiol. 2017. V. 2. P. 17105. https://doi.org/10.1038/nmicrobiol.2017.105
- Luan J., Liu S., Zhu X., Wang J., Liu K. Roles of biotic and abiotic variables in determining spatial variation of soil respiration in secondary oak and planted pine forests // Soil Biol. Biochem. 2012. V. 44. P. 143–150. https://doi.org/10.1016/j.soilbio.2011.08.012
- Lunardini V. Theory of n-factors and correlation of data // 3rd International Conference on Permafrost. Ottava: National Research Council of Canada, 1978. P. 40–46.
- Luo J., Chen Y., Wu Y., Shi P., She J., Zhou P. Temporal-Spatial Variation and Controls of Soil Respiration in Different Primary Succession Stages on Glacier Forehead in Gongga Mountain, China // PLoS ONE. 2012. V. 7. P. e42354. https://doi.org/10.1371/journal.pone.0042354
- Masyagina O.V., Menyailo O.V. The impact of permafrost on carbon dioxide and methane fluxes in Siberia: A meta-analysis // Environ. Res. 2020. V. 182. P. 109096. https://doi.org/10.1016/j.envres.2019.109096
- Matyshak G.V., Goncharova O.Y., Moskalenko N.G., Walker D.A., Epstein H.E., Shur Y. Contrasting Soil Thermal Regimes in the Forest-Tundra Transition Near Nadym, West Siberia, Russia // Permafrost and Periglacial Processes. 2017. V. 28. P. 108–118. https://doi.org/10.1002/ppp.1882
- Oertel C., Matschullat J., Zurba K., Zimmermann F., Erasmi S. Greenhouse gas emissions from soils—A review // Geochemistry. 2016. V. 76. P. 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
- Post W.M., Emanuel W.R., Zinke P.J., Stangenberger A.G. Soil carbon pools and world life zones // Nature. 1982. V. 298. P. 156–159. https://doi.org/10.1038/298156a0
- Poyatos R., Heinemeyer A., Ineson P., Evans J.G., Ward H.C., Huntley B., Baxter R. Environmental and Vegetation Drivers of Seasonal CO2 Fluxes in a Sub-arctic Forest–Mire Ecotone // Ecosystems. 2014. V. 17. P. 377–393. https://doi.org/10.1007/s10021-013-9728-2
- Reichstein M., Beer C. Soil respiration across scales: The importance of a model–data integration framework for data interpretation // Z. Pflanzenernähr. Bodenk. 2008. V. 171. P. 344–354. https://doi.org/10.1002/jpln.200700075
- Rustad L.E., Huntington T.G., Boone R.D. Controls on soil respiration: Implications for climate change // Biogeochemistry. 2000. V. 48. P. 1–6. https://doi.org/10.1023/A:1006255431298
- Ryan M.G., Law B.E. Interpreting, measuring, and modeling soil respiration // Biogeochemistry. 2005. V. 73. P. 3–27. https://doi.org/10.1007/s10533-004-5167-7
- Saiz G., Byrne K.A., Butterbach-Bahl K., Kiese R., Blujdea V., Farrell E.P. Stand age-related effects on soil respiration in a first rotation Sitka spruce chronosequence in central Ireland: stand age-related effects on soil respiration // Global Change Biol. 2006. V. 12. P. 1007–1020. https://doi.org/10.1111/j.1365-2486.2006.01145.x
- Scharlemann J.P., Tanner E.V., Hiederer R., Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool // Carbon Management. 2014. V. 5. P. 81–91. https://doi.org/10.4155/cmt.13.77
- Sommerkorn M. Micro-topographic patterns unravel controls of soil water and temperature on soil respiration in three Siberian tundra systems // Soil Biol. Biochem. 2008. V. 40. P. 1792–1802. https://doi.org/10.1016/j.soilbio.2008.03.002
- Sun T., Wang Y., Hui D., Jing X., Feng W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient // Soil Biol. Biochem. 2020. V. 148. P. 107905. https://doi.org/10.1016/j.soilbio.2020.107905
- Swift M.J., Heal O.W., Anderson J.M. Decomposition in Terrestrial Ecosystems. Berkeley and Los Angeles, 1979. 372 p.
- Tuomi M., Vanhala P., Karhu K., Fritze H., Liski J. Heterotrophic soil respiration—Comparison of different models describing its temperature dependence // Ecological Modelling. 2008. V. 211. P. 182–190. https://doi.org/10.1016/j.ecolmodel.2007.09.003
- Virkkala A.-M., Virtanen T., Lehtonen A., Rinne J., Luoto M. The current state of CO2 flux chamber studies in the Arctic tundra: A review // Progress in Physical Geography: Earth and Environment. 2018. V. 42. P. 162–184. https://doi.org/10.1177/0309133317745784
- Wang W., Zeng W., Chen W., Yang Y., Zeng H. Effects of Forest Age on Soil Autotrophic and Heterotrophic Respiration Differ between Evergreen and Deciduous Forests // PLoS ONE. 2013. V. 8. P. e80937. https://doi.org/10.1371/journal.pone.0080937
- Watts J.D., Natali S.M., Minions C., Risk D., Arndt K., Zona D., Euskirchen E.S. et al. Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada // Environ. Res. Lett. 2021. V. 16. P. 084051. https://doi.org/10.1088/1748-9326/ac1222
- Wrb I.W.G. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps // World Soil Resources Reports No. 106. 2015. P. 192.
- Zhou T., Shi P., Hui D., Luo Y. Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback: global pattern of temperature sensitivity // J. Geophys. Res. 2009. V. 114.https://doi.org/10.1029/2008JG000850
- Zobitz J.M., Moore D.J.P., Sacks W.J., Monson R.K., Bowling D.R., Schimel D.S. Integration of Process-based Soil Respiration Models with Whole-Ecosystem CO2 Measurements // Ecosystems. 2008. V. 11. P. 250–269. https://doi.org/10.1007/s10021-007-9120-1
- https://www2.gwu.edu/~calm/data/north.htm
Supplementary files
