Chemical Structure of Organic Matter of Agrochernozems of Different Alocalization on the Slope
- Authors: Artemyeva Z.S.1, Danchenko N.N.1, Kolyagin Y.G.2, Varlamov E.B.1, Zasukhina E.S.3, Tsomaeva E.V.1, Kogut B.M.1
-
Affiliations:
- Dokuchaev Soil Science Institute
- Lomonosov Moscow State University
- Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
- Issue: No 6 (2023)
- Pages: 703-714
- Section: SOIL CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/665850
- DOI: https://doi.org/10.31857/S0032180X22601517
- EDN: https://elibrary.ru/FQDGYL
- ID: 665850
Cite item
Abstract
The chemical structure of organic matter (OM) pools in agrochernozems confined to different zones of denudation-accumulation has been studied by solid-state 13C-NMR spectroscopy. It was revealed that in the erosion zone there are two competing processes occurring simultaneously: the decomposition of the “old” OM of the earlier underlying horizon and the stabilization of the fresh OM that has arrived with plant remains of cultivated plants (dynamic replacement of OM). Analytical data allow us to assert that the processes of dynamic replacement of eroded OM in the erosive zone quite effectively compensate for the processes of OM decomposition, as evidenced by the highest C/N ratio of all the studied OM pools in the eroding agrochernozem, along with the absence of significant differences in the integral indicators of their chemical structure. However, the constant removal of the upper soil layer from the eroding agrochernozem during each erosion event does not allow one to fully compensate for the OM quantitative losses in it. During the transportation of eroded material to the accumulative zone, the most labile part of OM can be mineralized. Accordingly, the OM again entering the accumulative zone is more transformed than that of the eroding agrochernozem. Nevertheless, the alluvial agrochernozem is characterized by an increased level of C accumulation in the soil as a whole and in all the studied OM pools. Accordingly, it can be stated that the constant OM inputs from the eroding position with its subsequent burial with each subsequent erosion event, as well as the repacking/aggregation of newly deposited OM, very effectively contribute to the deposition of C in the accumulative zone.
About the authors
Z. S. Artemyeva
Dokuchaev Soil Science Institute
Author for correspondence.
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
N. N. Danchenko
Dokuchaev Soil Science Institute
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
Yu. G. Kolyagin
Lomonosov Moscow State University
Email: artemyevazs@mail.ru
Russia, 119991, Moscow
E. B. Varlamov
Dokuchaev Soil Science Institute
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
E. S. Zasukhina
Federal Research Center “Computer Science and Control”, Russian Academy of Sciences
Email: artemyevazs@mail.ru
Russia, 119333, Moscow
E. V. Tsomaeva
Dokuchaev Soil Science Institute
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
B. M. Kogut
Dokuchaev Soil Science Institute
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
References
- Артемьева З.С. Органические и органо-глинистые комплексы агрогенно-деградированных почв. Автореф. дис. … докт. биол. наук. М., 2008. 48 с.
- Артемьева З.С. Органическое вещество и гранулометрическая система почвы. М.: ГЕОС, 2010. 240 с.
- Артемьева З.С. Органо-минеральные профили агрогенно-эрозионно-деградированных типичных черноземов Западной части Центрально-Черноземного района // Агрохимия. 2009. № 3. С. 1–8.
- Артемьева З.С., Зазовская Э.П., Засухина Е.С., Цомаеваa Е.В. Изотопный состав углерода органического вещества водоустойчивых структурных отдельностей типичного чернозема в контрастных вариантах землепользования // Почвоведение. 2023. № 3. С. 339–352. https://doi.org/10.31857/S0032180X22601098
- Данченко Н.Н., Артемьева З.С., Колягин Ю.Г., Когут Б.М. Сравнительный анализ гумусовых веществ и органического вещества физических фракций чернозема типичного // Почвоведение. 2022. № 10. С. 1241–1254. https://doi.org/10.31857/S0032180X22100033
- Дымов А.А., Старцев В.В., Горбач Н.М., Паюсова И.В., Габов Д.Н., Доннерхак О. Сравнение методов определения соединений углерода пирогенно измененных органических соединений // Почвоведение. 2021. № 11. С. 1332–1345. https://doi.org/10.31857/S0032180X2111006X
- Ермолаев О.П. Пояса эрозии в природно-антропогенных ландшафтах речных бассейнов. Казань: Изд-во Казанского ун-та, 1992. 147 с.
- Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.
- Травникова Л.С., Артемьева З.С., Сорокина Н.П. Распределение гранулоденсиметрических фракций в дерново-подзолистых почвах, подверженных плоскостной эрозии // Почвоведение. 2010. № 4. С. 495–504.
- Чуков С.Н., Лодыгин Е.Д., Абакумов Е.В. Использование 13С ЯМР-спектроскопии в исследовании органического вещества почв (обзор) // Почвоведение. 2018. № 8. С. 952–964. https://doi.org/10.1134/S0032180X18080026
- Angers D.A., Giroux M. Recently deposited organic matter in soil water-stable aggregates // Soil Sci. Soc. Am. J. 1996. V. 60. P. 1547–1551. https://doi.org/10.2136/sssaj1996.03615995006000050037x
- Artemyeva Z., Danchenko N., Kolyagin Yu., Kirillova N., Kogut B. Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants // Catena. 2021. V. 204. P. 105403. https://doi.org/10.1016/j.catena.2021.105403
- Baldock J.A., Oades J.M., Vassallo A.M., Wilson M.A. Solid-state CP/MAS 13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose // Austr. J. Soil Res. 1990. V. 28. P. 213–225. https://doi.org/10.1071/SR9900213
- Berhe A.A., Harden J.W., Torn M.S., Kleber M., Burton S.D., Harte J. Persistence of soil organic matter in eroding vs. depositional landform positions // J. Geophys. Res. Biogeosciences. 2012. V. 117. P. G02019. https://doi.org/10.1029/2011JG001790
- Berhe A.A., Harte J., Harden J.W., Torn M.S. The significance of the erosion induced terrestrial carbon sink // Bioscience. 2007. V. 57. P. 337–346. https://doi.org/10.1641/B570408
- Berhe A.A., Kleber M. Erosion, deposition, and the persistence of soil organic matter: Mechanistic considerations and problems with terminology // Earth Surf. Process. Landf. 2013. V. 38. P. 908–912. https://doi.org/10.1016/j.earscirev.2015.12.005
- Billings S.A., Buddemeier R.W., Richter D.B., Van Oost K., Bohling G. A simple method for estimating the influence of eroding soil profiles on atmospheric CO2 // Global Biogeochem. Cycles. 2010. V. 24. P. GB2001. https://doi.org/10.1029/2009GB003560
- Cheng W., Johnson D.W., Fu Sh. Rhizosphere Effects on Decomposition // Soil Sci. Soc. Am. J. 2003. V. 67(5). P. 1405–1417. https://doi.org/10.2136/sssaj2003.1418
- Doetterl S., Berhe A.A., Nadeu E., Wang Z., Sommer M., Fiener P. Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes // Earth-Science Rev. 2016. V. 154. P. 102–122. https://doi.org/10.1016/J.EARSCIREV.2015.12.005
- Fiener P., Dlugoß V., Van Oost K. Erosion-induced carbon redistribution, burial and mineralisation – Is the episodic nature of erosion processes important? // Catena. 2015. V. 133. P. 282–292. https://doi.org/10.1016/j.catena.2015.05.027
- Fontaine S., Barot S. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation // Ecol. Lett. 2005. V. 7. P. 1075–1087. https://doi.org/10.1111/j.1461-0248.2005.00813.x
- Fontaine S., Barot S., Barre P., Bdioui N., Mary B., Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply // Nature. 2007. V. 450. P. 277–280. https://doi.org/10.1038/nature06275
- Jakab G., Szabó J., Szalai Z., Mészáros E., Madarász B., Centeri C., Szabó B., Németh T., Sipos P. Changes in organic carbon concentration and organic matter compound of erosion-delivered soil aggregates // Environ. Earth Sci. 2016. V. 75. P. 144. https://doi.org/10.1007/s12665-015-5052-9
- Jastrow J.D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter // Soil Biol. Biochem. 1996. V. 28. P. 665–676. https://doi.org/10.1016/0038-0717(95)00159-X
- Golchin A., Clarke P., Oades J.M. The heterogeneous nature of microbial products as shown by solid-state C-13 CP/MAS NMR spectroscopy // Biogeochem. 1996. V. 34. P. 71–97. https://doi.org/10.1007/BF02180974
- Gregorich E.G., Greer K.J., Anderson D.W., Liang B.C. Carbon distribution and losses, erosion and deposition effects // Soil Till. Res. 1998. V. 47(3). P. 291–302. https://doi.org/10.1016/S0167-1987(98)00117-2
- Harden J.W., Sharpe J.M., Parton W.J., Ojima D.S., Fries T.L., Huntington T.G., Dabney S.M. Dynamic replacement and loss of soil carbon on eroding cropland // Glob. Biogeochem. Cycles. 1999. V. 13(4). P. 885–901. https://doi.org/10.1029/1999GB900061
- Hatcher P.G., Schnitzer M., Dennis L.W., Maciel G.E. Aromaticity of humic substances in soils // Soil Sci. Soc. Am. J. 1981. V. 45. P. 1089–1094. https://doi.org/10.2136/sssaj1981.03615995004500060016x
- Kuhn N.J. Erodibility of soil and organic matter, independence of organic matter resistance to interrill erosion // Earth Surface Processes and Landforms. 2007. V. 32(5). P. 794–802. https://doi.org/10.1002/esp.1486
- Kuhn N.J., Hoffmann T., Schwanghart W., Dotterweich M. Agricultural soil erosion and global carbon cycle, controversy over? // Earth Surface Processes and Landforms. 2009. V. 34. P. 1033–1038. https://doi.org/10.1002/esp.1796
- Kuzyakov Y., Friedel J.K., Stahr K. Review of mechanisms and quantication of priming effects // Soil Biol. Biochem. 2000. V. 32. P. 485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5
- Lal R. Soil erosion and the global carbon budget // Environ. Int. 2003. V. 29(4). P. 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7
- Liu S., Bliss N., Sundquist E., Huntington TG. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition // Glob. Biogeochem. Cycles. 2003. V. 17(2). P. 1074. https://doi.org/10.1029/2002GB002010
- Masiello C.A., Chadwick O.A., Southon J., Torn M.S., Harden J.W. Weathering controls on mechanisms of carbon storage in grassland soils // Global Biogeochem. Cycles. 2004. V. 18(4). P. GB4023. https://doi.org/10.1029/2004GB002219
- McCarty G.W., Ritchie J.C. Impact of soil movement on carbon sequestration in agricultural ecosystems // Environ. Poll. 2002. V. 116. P. 423–430. https://doi.org/10.1016/s0269-7491(01)00219-6
- Smith S.V., Renwick W.H., Buddemeier R.W., Crossland C. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States // Glob. Biogeochem. Cycles. 2001. V. 15. P. 697–707. https://doi.org/10.1029/2000GB001341
- Stallard R.F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial // Glob. Biogeochem. Cycles. 1998. V. 12. P. 231–257. https://doi.org/10.1029/98GB00741
- van Veen J.A., Paul E.A. Organic carbon dynamics in grassland soils. 1. Background information and computer simulation // Can. J. Soil Sci. 1981. V. 61. P. 185–201. https://doi.org/10.4141/CJSS81-024
- World reference base for soil resources 2014. A framework for international classification, correlation and communication, Word Soil Resource Report 106. FAO. Rome. 2014. 181 p.
- Xu S., Silveira M.L., Ngatia L.W., Normand A.E., Sollenberger L.E., Reddy K.R. Carbon and nitrogen pools in aggregate size fractions as affected by sieving method and land use intensification // Geoderma. 2017. V. 305. P. 70–79. https://doi.org/10.1016/j.geoderma.2017.05.044
Supplementary files
