Natural 13C Abundance of Organic Matter in Water-Stable Aggregates of Haplic Chernozem under Conditions of Contrasting Land Uses
- Authors: Artemyeva Z.S.1, Zazovskaya E.P.2, Zasukhina E.S.3, Tsomaeva E.V.1
-
Affiliations:
- Dokuchaev Soil Science Institute
- Institute of Geography of the Russian Academy of Science
- Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Issue: No 3 (2023)
- Pages: 339-352
- Section: SOIL CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/665883
- DOI: https://doi.org/10.31857/S0032180X22601098
- EDN: https://elibrary.ru/HBLHJT
- ID: 665883
Cite item
Abstract
Natural 13C abundance of different organic matter (OM) pools in water-stable macro- and free microaggregates of Haplic Chernozem in contrasting land use variants (steppe and long-term bare fallow) are described. Fractionation of 13C at certain stages of the formation of OM pools is relatively constant, regardless of the level of structural organization. This is demonstrated by the presented conceptual scheme, which allows one to quantify the fluxes of carbon (C) in the system of aggregate/OM pool. It was revealed that the main C fluxes in the OM pools go from the free OM (LFfr) to the Residue fraction through microaggregates within water-stable aggregates (mWSA), the components of which are the occluded OM (LFocc) and the Clay. With a high degree of probability, C flows from macroaggregates (WSAma) to free microaggregates (WSAmi). At the same time, the higher probability of the C flux into the Residue from the mWSA as compared to the direct C fluxes from the LFocc and the Clay, testifies in favor of the hypothesis that the Residue is represented, to a large extent, by parts/fragments of disintegrated mWSAs of 50–1 μm in size. Regardless of the size, the WSA contains a labile OM (as the components of mWSA, along with LFfr – only in macroaggregates) and a stable OM (Residue). Labile OM (LFocc and Clay) within WSAmi is characterized by a lower degree of microbial processing (“lighter” isotopic signature) compared to that within WSAma, which is due to its greater “physical” protection against microbial attacks. However, the most stable OM pool, concentrated in the Residue within WSAmi is enriched in 13C compared to that within WSAma. Considering that the Residue determines the total isotopic composition of C in WSA, the organic matter of free microaggregates is characterized by a higher degree of microbial processing in comparison with that of macroaggregates. Free microaggregates are parts of disintegrated macroaggregates.
About the authors
Z. S. Artemyeva
Dokuchaev Soil Science Institute
Author for correspondence.
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
E. P. Zazovskaya
Institute of Geography of the Russian Academy of Science
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
E. S. Zasukhina
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
Email: artemyevazs@mail.ru
Russia, 119333, Moscow
E. V. Tsomaeva
Dokuchaev Soil Science Institute
Email: artemyevazs@mail.ru
Russia, 119017, Moscow
References
- Артемьева З.С. Органические и органо-глинистые комплексы агрогенно-деградированных почв. Автореф. дис. … докт. биол. н. М., 2008. 48 с.
- Артемьева З.С. Органическое вещество и гранулометрическая система почвы. М.: ГЕОС, 2010. 240 с.
- Артемьева З.С., Данченко Н.Н., Зазовская Э.П., Колягин Ю.Г., Кириллова Н.П., Когут Б.М. Изотопный состав углерода и химическая структура органического вещества типичного чернозема в условиях контрастного землепользования // Почвоведение. 2021. № 6. С. 686–700. https://doi.org/10.31857/S0032180X21060034
- Артемьева З.С., Данченко Н.Н., Колягин Ю.Г., Кириллова Н.П., Цомаева Е.В., Когут Б.М. Химическая структура органического вещества водоустойчивых структурных отдельностей типичного чернозема в условиях контрастного землепользования: твердотельная CP-MAS 13C-ЯМР-спектроскопия // Почвоведение. 2022. № 6. С. 161–170. https://doi.org/10.31857/S0032180X2206003X
- Артемьева З.С., Зазовская Э.П., Варламов Е.Б., Засухина Е.С., Цомаева Е.В., Когут Б.М. Органическое вещество водоустойчивых макро- и микроагрегатов типичного чернозема в контрастных вариантах землепользования // Агрохимия. 2022. № 10. С. 3–14. https://doi.org/10.31857/S0002188122100039
- Артемьева З.С., Кириллова Н.П. Роль продуктов органо-минерального взаимодействия в структурообразовании и гумусообразовании основных типов почв Центра Русской равнины // Бюл. Почв. ин-та им. В. В. Докучаева. 2017. № 90. С. 73–95. https://doi.org/10.19047/0136-1694-2017-90-73-95
- Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.
- Когут Б.М., Артемьева З.С., Кириллова Н.П., Яшин М.А., Сошникова Е.И. Компонентный состав органического вещества воздушно-сухих и водоустойчивых макроагрегатов 2–1 мм типичного чернозема в условиях контрастного землепользования // Почвоведение. 2019. № 2. С. 161–170. https://doi.org/10.1134/S0032180X19020084
- Angers D.A., Giroux M. Recently deposited organic matter in soil water-stable aggregates // Soil Sci. Soc. Am. J. 1996. V. 60. P. 1547–1551. https://doi.org/10.2136/sssaj1996.03615995006000050037x
- Angers D.A., Recous S., Aita C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C 15N-labelled wheat straw in situ // Eur. J. Soil Sci. 1997. V. 48. P. 295–300. https://doi.org/10.1111/j.1365-2389.1997.tb00549.x
- Artemyeva Z., Danchenko N., Kolyagin Yu., Kirillova N., Kogut B. Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants // Catena. 2021. V. 204. P. 105403. https://doi.org/10.1016/j.catena.2021.105403
- Atere C.T., Gunina A., Zhu Z., Xiao M., Liu Sh., Kuzyakov Y., Chen L., Deng Y., Wu J., Ge T. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance // Soil Biol. Biochem. 2020. V. 149. P. 107931. https://doi.org/10.1016/j.soilbio.2020.107931
- Baisden W.T., Amundson R., Cook A.C., Brenner D.L. Turnover and storage of C and N in five density fractions from California annual grassland surface soils // Glob. Biogeochem. Cycles. 2002. V. 16. P. 117–132 https://doi.org/10.1029/2001GB001822
- Baldock J.A., Skjemstad J.O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 2000. V. 31. P. 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8
- Balesdent J. Soil organic matter dynamics and isotopic studies // Mineralogical Magazine. 1998. V. 62A. https://doi.org/10.1180/MINMAG.1998.62A.1.52
- Balesdent J., Mariotti A. Measurement of soil organic matter turnover using 13C natural abundance // Mass Spectrometry of Soils. N.Y.: Marcel Dekker, 1996. P. 83–111.
- Balesdent J., Besnard E., Arrouays D., Chenu C. The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence // Plant and Soil. 1998. V. 201. P. 49–57. https://doi.org/10.1023/A:1004337314970
- Chenu C., Stotzky G. Interactions between microorganisms and soil particles: An overview // Interactions between Soil Particles and Microorganisms – Impact on the Terrestrial Ecosystem. Chichester: John Wiley & Sons, 2002. P. 3–39.
- Christensen B.T. Physical fractionation of soil and organic matter in primary particle size and density separates // Adv. Soil Sci. 1992. V. 20. P. 1–89. https://doi.org/10.1007/978-1-4612-2930-8_1
- Crow S.E., Swanston C.W., Lajtha K., Brooks J.R., Keirstead H. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context // Biochem. 2007. V. 85. P. 69–90. https://doi.org/10.1007/s10533-007-9100-8
- del Galdo I., Six J., Peressotti A., Cotrufo M.F. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes // Global Change Biology. 2003. V. 9. P. 1204–1213. https://doi.org/10.1046/j.1365-2486.2003.00657.x
- Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy // Austral. J. Soil Res. 1994. V. 32. P. 285–309. https://doi.org/10.1071/SR9940285
- Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Soil structure and carbon cycling // Aust. J. Soil Res. 1994. V. 32. P. 1043–1068. https://doi.org/10.1071/SR9941043
- Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Structural and dynamic properties of soil organic matter as reflected by 13C natural abundance, pyrolysis mass spectrometry and solid-state 13C NMR spectroscopy in density fractions of an Oxisol under forest and pasture // Aust. J. Soil Res. 1995. V. 33. P. 59–76. https://doi.org/10.1071/SR9950059
- Golchin A., Baldock J.A., Oades J.M. A model linking organic matter decomposition, chemistry, and aggregate dynamic // Soil Processes and the Carbon Cycle. Fl.: Boca Raton, 1998. P. 245–266.
- Gunina A., Kuzyakov Y. Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance // Soil Biol. Biochem. 2014. V. 71. P. 95–104. https://doi.org/10.1016/j.soilbio.2014.01.011
- Jastrow J.D. Soil aggregate formation and the accrual of particulate and mineral associated organic matter // Soil Biol. Biochem. 1996. V. 28. P. 656–676. https://doi.org/10.1016/0038-0717(95)00159-X
- Jastrow J.D., Miller R.M. Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations // Soil Processes and the Carbon Cycle. Fl.: Boca Raton, 1998. P. 207–223.
- John B., Yamashita T., Ludwig B., Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use // Geoderma. 2005. V. 128. P. 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013
- Lehmann J., Kinyangi J., Solomon D. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms // Biogeochem. 2007. V. 85. P. 45–57. https://doi.org/10.1007/s10533-007-9105-3
- Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. V. 528. P. 60–68. https://doi.org/10.1038/nature16069
- Liu Y., Hu C., Hu W., Wang L., Li Z., Pan J., Chen F. Stable isotope fractionation provides information on carbon dynamics in soil aggregates subjected to different long-term fertilization practices // Soil Till. Res. 2018. V. 177. P. 54–60. https://doi.org/10.1016/j.still.2017.11.016
- Llorente M., Glaser B., Turrión M.B. Anthropogenic disturbance of natural forest vegetation on calcareous soils alters soil organic matter composition and natural abundance of 13C and 15N in density fractions // Eur. J. Forest Res. 2010. V. 129. P. 1143–1153. https://doi.org/10.1007/s10342-010-0402-3
- McCarthy J.F., Ilavsky J., Jastrow J.D., Mayer L.M., Perfect E., Zhuang J. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter // Geochimica et Cosmochimica Acta. 2008. V. 72. P. 4725–4744. https://doi.org/10.1016/j.gca.2008.06.015
- Menichetti L., Houot S., van Oort F., Kätterer T., Christensen B.T., Chenu C., Barre P., Vasilyeva N.A., Ekblad A. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments // Oecologia. 2014. https://doi.org/10.1007/s00442-014-3114-4
- Oades J.M. Soil organic matter and structural stability: mechanisms and implications for management // Plant and Soil. 1984. V. 76. P. 319–337. https://doi.org/10.1007/ BF02205590
- Oades J.M., Waters A.G. Aggregate hierarchy in soils // Aust. J. Soil Res. 1991. V. 29. P. 815–828. https://doi.org/10.1071/SR9910815
- O’Brien S.L., Jastrow J.D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands // Soil Biol. Biochem. 2013. V. 61. P. 1–13. https://doi.org/10.1016/j.soilbio.2013.01.031
- O’Leary M.H. Carbon isotope fractionation in plants // Phytochemistry. 1981. V. 20. P. 552–567. https://doi.org/10.1016/0031-9422(81)85134-5
- Pinheiro M., Garnier P., Beguet J., Martin-Laurent F., Vieuble-Gonod L. The millimetre-scale distribution of 2,4-D and its degraders drives the fate of 2,4-D at the soil core scale // Soil Biol. Biochem. 2015. V. 88. P. 90–100. https://doi.org/10.1016/j.soilbio.2015.05.008
- Puget P., Chenu C., Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates // Eur. J. Soil Sci. 2000. V. 51. P. 595–605. https://doi.org/10.1111/j.1365-2389.2000.00353.x
- Six J., Elliot E.T., Paustian K., Doran J.W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils // Soil Sci. Soc. Am. J. 1998. V. 62. P. 1367–1377. https://doi.org/10.2136/sssaj1998.03615995006200050032x
- Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter: implications for c-saturation of soils // Plant Soil. 2002. V. 241. P. 155–176. https://doi.org/10.1023/A:1016125726789
- Six J., Bossuyt H., Degryze S., Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics // Soil Tillage Res. 2004. V. 79. P. 7–31. https://doi.org/10.1016/j.still.2004.03.008
- Sollins P., Swanston C., Kramer M. Stabilization and destabilization of soil organic matter – a new focus // Biochem. 2007. V. 85. P. 1–7. https://doi.org/10.1007/s10533-007-9099-x
- Sollins P., Kramer M., Swanston C., Lajtha K., Filley T., Aufdenkampe A., Wagai R., Bowden R. Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization // Biochem. 2009. V. 96. P. 209–231. https://doi.org/10.1007/s10533-009-9359-z
- Solomon D., Lehmann J., Harden J., Wang J., Kinyangi J., Heymann K., Karunakaran C., Lu Y., Wirick S., Jacobsen C. Micro- and nano-environments of carbon sequestration: Multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations // Chem. Geol. 2012. V. 329. P. 53–73. https://doi.org/10.1016/j.chemgeo.2012.02.002
- Tisdall J.M. Formation of soil aggregates and accumulation of soil organic matter // Structure and Organic Matter Storage in Agricultural Soils. Fl.: Boca Raton, 1996. P. 57–96.
- Tisdall J.M., Oades J.M. Organic matter and water-stable aggregates in soils // J. Soil Sci. 1982. V. 33. P. 141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
- Wagai R., Mayer L.M., Kitayama K. Nature of the “occluded” low-density fraction in soil organic matter studies: A critical review // Soil Sci. Plant Nutr. 2009. V. 55. P. 13–25.https://doi.org/10.1007/s10533-009-9359-z
- Werth M., Kuzyakov Y. 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies // Soil Biol. Biochem. 2010. V. 42(9). P. 1372–1384. https://doi.org/10.1016/j.soilbio.2010.04.009
- World reference base for soil resources 2014. A framework for international classification, correlation and communication, Word Soil Resource Report 106. FAO. Rome, 2014. 181 p.
- Young I.M., Crawford J.W., Nunan N., Otten W., Spiers A. Microbial distribution in soils: physics and scaling // Adv. Agronomy. 2009. V. 100. P. 81–121. https://doi.org/10.1016/S0065-2113(08)00604-4
Supplementary files
