Rheological Properties of Boreal Semihydromorphic Soils: Relationship with Physico-Chemical Properties and Temperature Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of rheological studies of soils on the modular rheometer MCR 302 (Anton Paar, Austria) by the amplitude sweep method (oscillatory method) are considered. Study objects are represented by semi-hydromorphic soils of taiga zone in the Northeast of European part of Russia. We found that the strongest interactions between soil particles are developed in the horizons with high content of mobile humus compounds (fulvic acids) and Al/Fe-humus complexes (ELhi,g–ELg–CRM horizons). Increased structural durability is due to the cementation of soil particles resulting from the intake of humus substances and Al/Fe-humus compounds with the development of strong interparticle bonds in the soils. Another important factor is the freezing-thawing processes. The impact of seasonal freezing on the soil rheology is clearest in the profile of semihydromorphic variants of light soils (Histic Gleyic Stagnosols), in their cryometamorphic (CRM) horizons, where increased rigidity of soil bonds is due to condensation compaction of soil particles as a result of development of freezing veil with long period of temperatures about 0С (“zero curtain”). High values of structural interrelations – Integral Z in the soil profile may be due to weak aggregation of mineral mass caused by a constant surface moisture stagnation in the soil accompanied by an intensive gley process. Disaggregated soils are most at risk of erosion and washout processes, and yet thick moss-peat horizon forming in the upper part of the profile of semihydromorphic soils protects them from negative deformation phenomena. In the northward direction from the textural-differentiated soils of southern taiga to the cryomethamorphic soils of forest-tundra we observe an increasing of the strength or rigidity of interpartical soil bonds. At the latitudinal scale, the strength or durability of soil bonds in the cryometamorphic soils of northern, far northern taiga and forest-tundra is higher than that in the semihydromorphic texture-differentiated soils of southern and middle taiga. This pattern may be due to more active intake of fulvic acids, including complex Al-FA-humic substances, as well as longer freezing of northern soils. It is shown that rheological parameters can be used as additional indicators in the diagnosis and classification of taiga soils.

About the authors

Yu. V. Kholopov

Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: Yuraholopov@yandex.ru
ORCID iD: 0000-0002-5725-746X
Russian Federation, Syktyvkar

D. D. Khaydapova

Lomonosov Moscow State University

Email: Yuraholopov@yandex.ru
Russian Federation, Moscow

A. B. Novakovsky

Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences

Email: Yuraholopov@yandex.ru
Russian Federation, Syktyvkar

E. M. Lapteva

Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences

Email: Yuraholopov@yandex.ru
Russian Federation, Syktyvkar

References

  1. Атлас почв Республики Коми / Под ред. Добровольского Г.В. и др. Сыктывкар: Коми республиканская типография, 2010. 356 с.
  2. Атлас Республики Коми по климату и гидрологии. М.: Дрофа, ДиК, 1997. 116 с.
  3. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
  4. Вершинин П.В. Почвенная структура и условия ее формирования. М.: Изд-во АН СССР, 1958. 187 с.
  5. Жангуров Е.В., Лебедева (Верба) М.П., Забоева И.В. Микростроение генетических горизонтов автоморфных таежных почв Тимана // Почвоведение. 2011. № 3. С. 288–299. https://doi.org/10.1134/S1064229311030203
  6. Забоева И.В. Почвы и земельные ресурсы Коми АССР. Сыктывкар: Коми книжное издательство, 1975. 344 с.
  7. Канев В.В. Параметры оглеения и подзолообразования в почвах на покровных суглинках северо-востока Русской равнины. Екатеринбург: УрО РАН, 2002. 221 с.
  8. Конищев В.Н., Рогов В.В. Влияние криогенеза на глинистые минералы // Криосфера Земли. 2008. Т. 12. № 1. С. 51–58.
  9. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  10. Лепорский О.Р., Седов С.Н., Шоба С.А., Бганцов В.Н. Роль промораживания в разрушении первичных минералов подзолистых почв // Почвоведение. 1990. № 6. С. 112–116.
  11. Мокиев В.В. Промерзание почв как результативный признак метеорологических показателей холодного периода года (на примере промерзания освоенной и целинной суглинистых почв среднетаежной подзоны Республики Коми) // Вестник Ин-та биологии. 2009. № 5. С. 16–19.
  12. Полевой определитель почв России. М.: Почв. ин-т им. В.В. Докучаева, 2008. 182 с.
  13. Русанова Г.В., Лаптева Е.М., Пастухов А.В., Каверин Д.А. Современные процессы и унаследованные педогенные признаки в почвах на покровных суглинках южной тундры // Криосфера Земли. 2010. Т. 14. № 3. С. 52–60.
  14. Теория и практика химического анализа почв / Под ред. Воробьевой Л.А. M.: ГЕОС, 2006. 400 с.
  15. Хайдапова Д.Д., Честнова В.В., Шеин Е.В., Милановский Е.Ю. Реологические свойства черноземов типичных (Курская область) при различном землепользовании // Почвоведение. 2016. № 8. С. 955–963. https://doi.org/10.7868/ S 0032180 X 16080049
  16. Хайдапова Д.Д., Милановский Е.Ю., Бутылкина М.А., Шеин Е.В., Дембовецкий А.В. Практикум по физике твердой фазы почв. М.: Буки Веди, 2022. 132 c.
  17. Холопов Ю.В., Хайдапова Д.Д., Лаптева Е.М. Реологические свойства северотаежных автмоорфных и полугидроморфных криометаморфических почв европейского северо-востока России (Республика Коми) // Почвоведение. 2018. № 4. С. 439–450. https://doi.org/10.7868/ S 0032180 X 18040056
  18. Шамрикова Е.В., Пунегов В.В., Груздев И.В., Ванчикова Е.В., Ветошкина А.А. Индивидуал ьные органические соединения водных вытяжек из подзолистых почв Республики Коми // Почвоведение. 2012. № 10. С. 1066–1076. https://doi.org/10.7868/ S 0032180 X 13060099
  19. Шеин Е.В., Болотов А.Г., Хайдапова Д.Д., Милановский Е.Ю., Тюгай З.Н., Початкова Т.Н. Реологические свойства черноземов Алтайского Приобья // Вестник Алтайского гос. аграрного ун-та. 2014. № 8. С. 32–38.
  20. Baumgarten W. Soil microstructural stability as influenced by physicochemical parameters and its environmental relevance on multiple scales: Habilitation thesis, Kiel University, 2013. 263 p.
  21. Baumgarten W. Structural stability of Marshland soils of the riparian zone of the Tidal Elbe River // Soil Till. Res. 2012. V. 125. P. 80–88.
  22. Dealy J.M. Rheometers for Molten Plastics. A Practical Guide to Testing and Property Measurement. N.Y.: Van Nostrand Reinhold, 1982. 302 p.
  23. Ghezzehei T.A., Or D. Rheological Properties of Wet Soils and Clays under Steady and Oscillatory Stresses // Soil Sci. Soc. Am. J. 2001. V. 65. P. 624–637.
  24. Horn R., Smucker A. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils // Soil Till. Res. 2005. V. 82. P. 5–14.
  25. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovermental Panel on Climate Change. IPCC, Geneva, Switzerland. 151 p. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/YR_AR5_FINAL_full.pdf.
  26. Jeong S., Locat J., Leroueil S., Malet J., Locat J., Leroueil S., Malet J. Rheological properties of fine-grained sediment: the roles of texture and mineralogy // Can. Geotechn. J. 2010. V. 47. P. 1085–1100.
  27. Jones P.D., New M., Parker D.Е., Martin S., Rigor I.O. Surface air temperature and its changes over the past 150 years // Reviews of Geophysics. 1999. V. 37. P. 173–200.
  28. Markgraf W., Horn R., Peth S. An approach to rheometry in soil mechanics – Structural changes in bentonite, clayey and silty soils // Soil Till. Res. 2006. V. 91. P. 1–14.
  29. Markgraf W., Watts C.W. Whalley W.R., Hrkac T., Horn R. Influence of organic matter on rheological properties of soil // Appl. Clay Sci. 2012. V. 64. P. 25–33.
  30. Markgraf, W. Bellmann C., Caspari A., Horn R. Quantifying microstructural stability of South-Brazilian soils by the application of rheological techniques and zeta potential measurements // A Christian-Albrechts-University zu Kiel, Institute for Plant Nutrition and Soil Science. Kiel, 2010. P. 1778–1782.
  31. Markgraf W., Horn R. Rheological investigations in soil micro mechanics: Measuring stiffness degradation and structural stability on a particle scale // Progress in Management Engineering. N.Y.: Nova Science Publishers, 2009. P. 237–279.
  32. Markgraf W., Horn R. Scanning electron microscopyenergy dispersive scan analyses and rheological investigations of south-Brazilian soils // Soil Sci. Soc. Am. J. 2007. V. 71. P. 851–859.
  33. Mezger T.G. The Rheology Handbook. Hanover, 2011. 436 p.
  34. Micheli E. Tombacz E., Szegi T., Gal A. The Relationship of Rheological Parameters and Erodibility of Soils // 12th ISCO Conference Beijing. 2002. P. 111–115.
  35. Or D., Ghezzehei T.A. Modeling post-tillage structural dynamics: a review // Soil Till. Res. 2002. V. 64. P. 41–59.
  36. Pertile P., Reichert J.M., Gubiani P.I., Holthusen D., Costa A. Rheological Parametersas Affected by Water Tension in Subtropical Soils // Revista Brasileira de Ciência do Solo. 2016. V. 40. https://doi.org/10.1590/18069657rbcs20150286.
  37. Scherer G.W. Viscous sintering with a pore-size distribution and rigid inclusions // J. Am. Ceram. Soc. 1988. V. 71. P. 447–448.
  38. Silva H.R. Wetting-induced changes in near surface soil physical properties affecting surface irrigation. Ph.D. dissertation. Logan: Utah State Univ, 1995. 188 p.
  39. Stoppe N., Horn R. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties? // IOP Conference Series: Journal of Physics: Conference Series. 2017. V. 790. P. 012032.
  40. Stoppe N., Horn R. Microstructural strength of tidal soils – a rheometric approach to develop pedotransfer functions // J. Hydrol. Hydromech. 2018. V. 66. P. 87–96. https://doi.org/10.1515/johh-2017-0031.
  41. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 2015.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Curve of dependence of the reserve modulus (G‘) and losses (G’) on the strain value (a); curve of dependence of the loss factor (tgδ) on the strain value (b)

Download (186KB)
3. Fig. 2. Distribution of rheological parameters (a - LVE-range, %, b - G', MPa, c - Crossover, %, d - Integral Z) in texture-differentiated and cryometamorphic horizons of soils of key sites of different subzones: KS-I - southern taiga (VT horizon), KS-II - middle taiga (VT horizon), KS-III - northern taiga (CRM horizon), KS-IV - extreme northern taiga (CRM horizon), KS-V - forest tundra (CRM horizon)

Download (175KB)
4. Fig. 3. Distribution of rheological parameters (a - LVE-range, %, b - G', MPa, c - Crossover, %, d - Integral Z) in humus-accumulative and flow-humus horizons of soils of key sites of different subzones: KS-I - southern taiga (horizon AYg), KS-II - middle taiga (horizon ELhi,g), KS-III - northern taiga (horizon ELhi,g), KS-IV - extreme northern taiga (horizon ELhi,g), KS-V - forest tundra (horizon ELhi,g)

Download (160KB)
5. Fig. 4. Results of PCA ordination of the main diagnostic soil horizons (ELhi,g, BT, CRM, C) using the pairwise correlation matrix. The proportion of explained variance for PCA1 is 32% and 19% for PCA2. Correlation vector - indicates the rheological parameter (G', Integral Z, Crossover, LVE) with which the physicochemical properties of the studied soil horizons are most closely correlated, which is visually reflected on the graph as their grouping in the direction of the correlation vector

Download (166KB)

Copyright (c) 2024 Russian Academy of Sciences