Particularities of Hydrolytic Enzymes Pool in Soils of Agricultural Terraces in the Eastern Caucasus
- Authors: Chernysheva E.V.1, Fornasier F.2,3
-
Affiliations:
- Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
- Centro di Ricerca Viticoltura ed Enologia
- SOLIOMICS
- Issue: No 6 (2024)
- Pages: 861-875
- Section: БИОЛОГИЯ ПОЧВ
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/666630
- DOI: https://doi.org/10.31857/S0032180X24060066
- EDN: https://elibrary.ru/YBPMPQ
- ID: 666630
Cite item
Abstract
A study of the influence of farming practices in the Middle Ages (X–XV AD) on the activities of 11 hydrolytic enzymes involved in the biogeochemical cycles of basic elements in soils was carried out. Agrostratozems of medieval agricultural terraces of mid-mountain Dagestan (Plaggic and Hortic Anthrosol) were chosen as objects of study. In all cases, the enzymatic activity of the studied soils, in all soil layers, decreased in the following order: alkaline phosphatase > phosphodiesterase > acid phosphatase > pyrophosphatase ≥ leucine aminopeptidase > arylsulfatase > chitinase > β-glucosidase > xylanase > α-glucosidase > cellobiohydrolase. The enzymatic activity of the studied soils was primarily determined by the amount of microbial biomass (Cmic). Thus, the activity of enzymes of various groups depended on Cmic by 61–94%. Agricultural practices associated with ploughing, manuring, and irrigation lead to convergence in the activity of nitrogen cycle enzymes in soils of the mountain zone, which is associated with similar features of the nitrogen cycle in agrogenic soils, regardless of bioclimatic conditions. The addition of organic materials has led to an increase in the physiological efficiency of microbial communities and the rate of enzyme production, and high levels of biological activity can persist in soil for about 1000 years. Ploughing with the application of organic fertilizers in the past led to an increase in enzymatic activity expressed per unit of microbial biomass (specific activity), and therefore this indicator can be used as an indicator of agrogenic transformation of soils in the past.
Full Text
##article.viewOnOriginalSite##About the authors
E. V. Chernysheva
Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences
Author for correspondence.
Email: e.chernyysheva@yandex.ru
Russian Federation, Pushchino
F. Fornasier
Centro di Ricerca Viticoltura ed Enologia; SOLIOMICS
Email: e.chernyysheva@yandex.ru
Italy, Gorizia; Udine
References
- Бабаев М.П., Оруджева Н.И. Оценка биологической активности почв субтропической зоны Азербайджана // Почвоведение. 2009. № 10. С. 1248–1255.
- Борисов А.В., Коробов Д.С., Идрисов И.А., Калинин П.И. Почвы земледельческих террас с подпорными стенками в горном Дагестане // Почвоведение. 2018. № 1. С. 26–36. https://doi.org/10.7868/ S 0032180 X 17010038
- Борисов А.В., Каширская Н.Н., Ельцов М.В., Пинской В.Н., Плеханова Л.Н., Идрисов И.А. Почвы древних земледельческих террас Восточного Кавказа // Почвоведение. 2021. № 5. С. 542–557. https://doi.org/10.31857/S0032180X2105004X
- Демкинa Т.С., Борисов А.В., Хомутова Т.Э. Сравнительная характеристика современных и погребенных почвенных комплексов в пустынно-степной зоне Волго-Донского междуречья // Почвоведение. 2019. № 11. C. 1295–1306. http :// dx. doi. org /10.1134/ S 0032180 X 19110029
- Каширская Н.Н., Плеханова Л.Н., Чернышева Е.В., Ельцов М.В., Удальцов С.Н., Борисов А.В. Пространственно-временные особенности фосфатазной активности естественных и антропогенно-преобразованных почв // Почвоведение. 2020. № 1. С. 89–101. https://doi.org/10.31857/ S 0032180 X 20010098
- Куликова А.Х. Антонова С.А., Козлов А.В. Ферментативная активность почвы в зависимости от удобрения // Вестник Ульяновской государственной сельскохозяйственной академии. 2017. № 4. С. 36–42.
- Минникова Т.В., Мокриков Г.В., Казеев К.Ш., Акименко Ю.В., Колесников С.И. Оценка ферментативной активности черноземов Ростовской области под бинарными посевами подсолнечника // Известия ТСХА. 2017. Вып. 6. С. 141–155.
- Собина А.С., Хачиков Э. А., Шмараева А. Н., Федоренко А. Н., Приходько В.Д., Казеев К.Ш. Биологическая активность чернозема обыкновенного через 5 лет после прекращения агрогенной обработки // Агрохимический вестник. 2022. № 1. С. 22–26.
- Теории и методы физики почв / Под ред. Шеина Е.В., Карпачевского Л.О. М.: Гриф и К, 2007. 616 с.
- Хазиев Ф.Х. Системно-экологический анализ ферментативной активности почв. М.: Наука, 1982. 204 с.
- Хамова О.Ф., Бойко В.С. Влияние минеральных удобрений и орошения на биологическую активность лугово-черноземной почвы и урожайность многолетних трав //Агрохимия. 2004. № 11. С. 9–13.
- Хомутова Т.Э. Демкина Т.С., Борисов А.В., Шишлина Н.И. Состояние микробных сообществ подкурганных палеопочв пустынно-степной зоны эпохи средней бронзы (XXVII – XXVI вв. до н.э.) в связи с динамикой увлажненности климата // Почвоведение. 2017. № 2. С. 239–248. https://doi.org/10.7868/ S 0032180 X 1702006 X
- Чернышева Е.В., Форназьер Ф., Борисов А.В. Коэффициенты пересчета содержания двухцепочечной ДНК в углерод микробной биомассы почв: физико-химические аспекты и влияние антропогенной деятельности // Почвоведение. 2023. № 5. С. 664–675. https://doi.org/10.31857/S0032180X2260127X
- Щур А.В., Виноградов Д.В., Валько В.П. Влияние различных уровней агроэкологических нагрузок на биохимические характеристики почвы // Юг России: экология, развитие. 2016. Т. 11. № 4. С. 139–148.
- Anderson T.-H., Martens R. DNA determinations during growth of soil microbial biomasses // Soil Biol. Biochem. 2013. V. 57. P. 487–495. https://doi.org/10.1016/j. soilbio.2012.09.031
- Bastida F., Torres I.F., Romero-Trigueros C., Baldrian P., Větrovský T., Alarcon J.J. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions // Soil Biol. Biochem. 2017. V. 104. P. 226–237. https://doi.org/10.1016/j.soilbio.2016.10.024
- Beheshti A., Raiesi F., Golchin A. Soil properties, C fractions and their dynamics in land use conversion from native forests to croplands in northern Iran // Agric. Ecosyst. Environ. 2012. V. 148. P. 121–133. https://doi.org/10.1016/j.agee.2011.12.001
- Blum S.A.E., Lorenz M.G., Wackernagel W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils // Systematic Appl. Microbiol. 1997. V. 20. P. 513–521. https://doi.org/10.1016/S0723-2020(97)80021-5
- Burns R.G., DeForest J.L., Marxsen J., Sinsabaugh R.L., Stromberger M.E., Wallenstein M.D., Weintraub M.N. et al. Soil enzymes in a changing environment: Current knowledge and future directions // Soil Biol. Biochem. 2013. V. 58. P. 216–234. https://doi.org/10.1016/j.soilbio.2012.11.009
- Chen W., Wu L., Frankenberger W.T., Chang A.C. Soil enzyme activities of long‐term reclaimed wastewater‐irrigated soils // J. Environ. Qual. 2008. V. 37 (S5). P. S-36–41. https://doi.org/10.2134/jeq2007.0315
- Chernysheva E., Khomutova T., Fornasier F., Kuznetsova T., Borisov A. Effects of long-term medieval agriculture on soil properties: A case study from the Kislovodsk basin, Northern Caucasus, Russia // J. Mt. Sci. 2018. V. 15. P. 1171–1185. https://doi.org/10.1007/s11629-017-4666-7
- Chernysheva E., Korobov D., Khomutova T., Fornasier F., Borisov A. Soil microbiological properties in livestock corrals: An additional new line of evidence to identify livestock dung // J. Archaeol. Sci: Rep. 2021. V. 37. 103012 https://doi.org/10.1016/j.jasrep.2021.103012.
- Cowie A., Lonergan, V.E., Rabbi F.S.M., Fornasier F., Macdonald C., Harden S., Akitomo Kawasaki A. et al. The impact of carbon farming practices on soil carbon in northern New South Wales // Soil Res. 2013. V. 51. P. 707–718. https://doi.org/10.1071/SR13043
- Crecchio C., Stotzky G. Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase // Soil Biol. Biochem. 1998. V. 30. P. 1060–1067. https://doi.org/10.1016/S0038-0717(97)00248-4
- Cui Y., Bing H., Fang L., Jiang M., Shen G., Yu J., Wang X. et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems // Plant Soil. 2019. V. 458. P. 7–20. https://doi.org/10.1007/s11104-019-04159-x
- De Medeiros E.V., de Alcantara Notaro K., de Barros J.A., da Silva Moraes W., Silva A. O., Moreira K.A. Absolute and specific enzymatic activities of sandy entisol from tropical dry forest, monoculture and intercropping areas // Soil Tillage Res. 2015. V. 145. P. 208–215. https://doi.org/10.1016/j.still.2014.09.013
- Dick R.P., Sandor J.A., Eash N.S. Soil enzyme activities after 1500 years of terrace agriculture in the Colca Valley, Peru // Agr. Ecosyst. Environ. 1994. V. 50. P. 123–131. https://doi.org/10.1016/0167-8809(94)90131-7
- Dinkelaker B., Marschner H. In vivo demonstration of acid phosphatase activity in the rhizosphere of soil-grown plants // Plant Soil. 1992. V. 144. P. 199–205. https://doi.org/10.1007/BF00012876.
- Duly O., Nannipieri P. Intracellular and extracellular enzyme activity in soil with reference to elemental cycling // Zeitschrift fuÈr Pflanzenerna Èhrung und Bodenkunde. 1998. V. 161. P. 243–248. https://doi.org/10.1002/jpln19983581610310
- Edmeades D.C. The long-term effects of manure and fertilisers on soil productivity and quality: a review // Nutr. Cycl. Agroecosys. 2003. V. 66. P. 165–180. https://doi.org/10.1023/A:1023999816690
- Giacometti C., Demyan M.S., Cavani L, Marzadori C., Ciavatta C., Kandeler E. Chemical and microbiological soil quality indicators and their potential to differentiate fertilization regimes in temperate agroecosystems // Appl. Soil Ecol. 2013. V. 64. P. 32–48. https://doi.org/10.1016/j.apsoil.2012.10.002
- Hendriksen N.B., Creamer R.E., Stone D. Winding A. Soil exo-enzyme activities across Europe – The influence of climate, land-use and soil properties // Appl. Soil Ecol. 2016. V. 97. P. 44–48. https://doi.org/10.1016/j.apsoil.2015.08.012
- Homburg J.A., Sandor J.A. Anthropogenic effects on soil quality of ancient agriculture systems of the American Southwest // Catena. 2011. V. 85. P. 144–154. https://doi.org/10.1016/j.catena.2010.08.005
- Lagomarsino A., Benedetti A., Marinari S., Pompili L., Moscatelli M.C., Roggero P.P., Lai R. et al. Soil organic C variability and microbial functions in a Mediterranean agroforest ecosystem // Biol. Fertil. Soils. 2011. V. 47. P. 283–291. https://doi.org/10.1007/s00374-010-0530-4
- Liu S., Wang J., Pu S., Blagodatskaya E., Kuzyakov Y., Razavi B.S. Impact of manure on soil biochemical properties: A global synthesis // Sci. Total Environ. 2020. V. 745. P. 141003. https://doi.org/10.1016/j.scitotenv.2020.141003
- Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D. et al. Global patterns of phosphatase activity in natural soils // Sci. Rep. 2017. V. 7. P. 1337. https://doi.org/10.1038/s41598-017-01418-8
- Marx M.C., Wood M., Jarvis S.C. A microplate fluorimetric assay for the study of enzyme diversity in soils // Soil Biol. Biochem. 2001. V. 33. P. 1633–1640. https://doi.org/10.1016/S0038-0717(01)00079-7
- Moghimian N., Hosseini S.M., Kooch Y., Darki B.Z. Impacts of changes in land use/cover on soil microbial and enzyme activities // Catena. 2017. V. 157. P. 407–414. https://doi.org/10.1016/jcatena201706003
- Muneer M., Oades J.M. The role of Ca-organic interactions in soil aggregate stability. 1. Laboratory studies with glucose-C-14, CaCO 3 and CaSO 4 ·H 2 O // Austral. J. Soil Res. 1989. V. 27. P. 389–399. https://doi.org/10.1071/SR9890389
- Muneer M., Oades J.M. The role of Ca-organic interactions in soil aggregate stability. 2. Field studies with C-14-labeled straw, CaCO 3 and CaSO 4 ·H 2 O // Austral. J. Soil Res. 1989. V. 27. P. 401–409. https://doi.org/10.1071/SR9890401
- Nannipieri P., Giagnoni L., Landi L., Renella G. Role of Phosphatase Enzymes in Soil // Phosphorus in Action. Soil Biology / Eds. Bünemann E., Oberson A., Frossard E. Berlin: Springer, 2011. V. 26. P. 215–243.
- Ovsepyan L., Kurganova I., de Gerenyu V.L., Kuzyakov Y. Conversion of cropland to natural vegetation boosts microbial and enzyme activities in soil // Sci. Total Environ. 2020. V. 743. P. 140829. https://doi.org/10.1016/j.scitotenv.2020.140829
- Raiesi F., Beheshti A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran // Appl. Soil Ecol. 2014. V. 75. P. 63–70. https://doi.org/10.1016/j.apsoil.2013.10.012
- Rosinger C., Rousk J., Sandén H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? – A critical assessment in two subtropical soils // Soil Biol. Biochem. 2019. V. 128. P. 115–126. https://doi.org/10.1016/j.soilbio.2018.10.011
- Semenov M., Blagodatskaya E., Stepanov A., Kuzyakov Ya. DNA-based determination of soil microbial biomass in alkaline and carbonaceous soils of semi-arid climate // J. Arid Environ. 2018. V. 150. P. 54–61. https://doi.org/10.1016/j.jaridenv.2017.11.013
- Silva E.D., de Medeiros E.V., Duda G.P., Lira M.A., Brossard M., de Oliveira J.B., dos Santos U.J. et al. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region // Catena. 2019. V. 172. P. 397–407. https://doi.org/10.1016/j.catena.2018.09.007
- Sinsabaugh R.L., Lauber C.L., Weintraub M.N., Ahmed B., Allison S.D., Crenshaw C. et al. Stoichiometry of soil enzyme activity at global scale // Ecol. Lett. 2008. V. 11. P. 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
- Sinsabaugh R.L., Moorhead D.L. Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition // Soil Biol. Biochem. 1994. V. 26. P. 1305–1311. https://doi.org/10.1016/0038-0717(94)90211-9
- Scherer S., Höpfer B., Deckers K., Fischer E., Fuchs M., Kandeler, E., Lechterbeck J. Middle Bronze Age land use practices in the northwestern Alpine foreland–a multi-proxy study of colluvial deposits, archaeological features and peat bogs // Soil. 2021. V. 7. P. 269–304. https://doi.org/10.5194/soil-7-269-2021
- Tarafdar J.C., Claassen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms // Biol. Fertil. Soils. 1988. V. 5. P. 308–312. https://doi.org/10.1007/BF00262137.
- Tischer A., Blagodatskaya E., Hamer U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions // Soil Biol. Biochem. 2015. V. 89. P. 226–237. https://doi.org/10.1016/j.soilbio.2015.07.011
- Wang Q., Wang S. Response of labile soil organic matter to changes in forest vegetation in subtropical regions // Appl. Soil Ecol. 2011. V. 47. P. 210–216. https://doi.org/10.1016/j.apsoil.2010.12.004
- Welc M., Frossard E., Egli S., Bünemann E.K., Jansa J. Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence // Soil Biol. Biochem. 2014. V. 74. P. 21–30. https://doi.org/10.1016/j.soilbio.2014.02.014
- Xiao W., Chen X., Jing X., Zhu B. A meta-analysis of soil extracellular enzyme activities in response to global change // Soil Biol. Biochem. 2018. V. 123. P. 21–32. https://doi.org/10.1016/j.soilbio.2018.05.001
- Zhao T., Lozano Y.M., Rillig M.C. Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time // Front. Environ. Sci. 2021. V. 9. P. 675803. https://doi.org/10.3389/fenvs.2021.675803
- Zuccarini P., Sardans J., Asensio L., Peñuelas J. Altered activities of extracellular soil enzymes by the interacting global environmental changes // Glob. Chang. Biol. 2023. V. 29. P. 2067–2091. https://doi.org/10.1111/gcb.16604
Supplementary files
