Combustion Temperature and Soil Organic Horizons Composition Influence on the PAHs Content (Laboratory Experiment Results)
- Authors: Gorbach N.M.1,2, Yakovleva E.V.2, Dymov A.A.2,3
-
Affiliations:
- Pitirim Sorokin Syktyvkar State University
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: No 5 (2024)
- Pages: 756-769
- Section: DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/666641
- DOI: https://doi.org/10.31857/S0032180X24050084
- EDN: https://elibrary.ru/YLDEXC
- ID: 666641
Cite item
Abstract
Fire induced changes in the content and composition of polycyclic aromatic hydrocarbons (PAHs) in organic horizons of the boreal zone soils are considered. Experiment of combustion under oxygen deficient conditions were conducted. The organic horizons of soils as peat (sphagnum oligotrophic) and two types of forests (lichen pine and green-moss spruce) were selected. The PAHs content was determined by high-performance liquid chromatography. It was found that combustion conditions, composition of organic horizons and combustibility significantly affect the content and composition of PAHs. The formation of PAHs occurs to a greater extent at 300°C. Compared with the original samples, the content increases from 2.7 to 9.7 times. Compared with the peak PAHs content (in 300°C) samples, a decrease from 5.8 to 33.0 times is found at 500°C. It is likely that the significant decrease in the content of polycyclic aromatic hydrocarbons is due to the decomposition of substances to simpler ones. The ratio of low molecular to high molecular weight PAHs is indicated. The obtained ratio greater than 1.0 can serve as an indicator of pyrogenic origin of polyarenes.
Full Text
##article.viewOnOriginalSite##About the authors
N. M. Gorbach
Pitirim Sorokin Syktyvkar State University; Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: nikolay.tbo@gmail.com
ORCID iD: 0000-0002-5099-6868
Russian Federation, Syktyvkar, 167001; Syktyvkar, 167982
E. V. Yakovleva
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences
Email: nikolay.tbo@gmail.com
ORCID iD: 0000-0003-0793-1468
Russian Federation, Syktyvkar, 167982
A. A. Dymov
Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: nikolay.tbo@gmail.com
ORCID iD: 0000-0002-1284-082X
Faculty of Soil Science
Russian Federation, Syktyvkar, 167982; Moscow, 119991References
- Безносиков В.А., Лодыгин Е.Д., Габов Д.Н., Василевич Р.С. Гуминовые вещества и полициклические ароматические углеводороды в тундровых почвах // Теоретическая и прикладная экология. 2015. № 1. С. 44–52.
- Габов Д.Н., Безносиков В.А., Кондратенок Б.М., Яковлева Е.В. Закономерности формирования полициклических ароматических углеводородов в почвах северной и средней тайги // Почвоведение. 2008. № 11. С. 1334–1343.
- Геннадиев А.Н., Пиковский Ю.И., Цибарт А.С., Смирнова М.А. Углеводороды в почвах: происхождение, состав, поведение (обзор) // Почвоведение. 2015. № 10. С. 1195–1195. https://doi.org/10.7868/S0032180X15100020
- Геннадиев А.Н., Цибарт А.С. Факторы и особенности накопления пирогенных полициклических ароматических углеводородов в почвах заповедных и антропогенно-измененных территорий // Почвоведение. 2013. № 1. С. 32–32. https://doi.org/10.7868/S0032180X13010024
- Головацкая Е.А., Никонова Л.Г. Разложение растительных остатков в торфяных почвах олиготрофных болот // Вестник Томск. гос. ун-та. Биология. 2013. № 3(23). С. 137–151. https://doi.org/10.17223/19988591/23/13
- Дымов А.А., Дубровский Ю.А., Габов Д.Н. Пирогенные изменения подзолов иллювиально-железистых (средняя тайга, республика Коми) // Почвоведение. 2014. № 2. С. 144–144. https://doi.org/10.7868/S0032180X14020051
- Дымов А.А., Милановский Е.Ю., Холодов В.А. Состав и гидрофобные свойства органического вещества денсиметрических фракций почв Приполярного Урала // Почвоведение. 2015. № 11. С. 1335–1335. https://doi.org/10.7868/S0032180X15110052
- Инишева Л.И. Торфяные почвы: их генезис и классификация // Почвоведение. 2006. № 7. С. 781–786
- Казеев К.Ш., Одабашян М.Ю., Трушков А.В., Колесников С.И. Оценка влияния разных факторов пирогенного воздействия на биологические свойства чернозема // Почвоведение. 2020. № 11. С. 1372–1382. https://doi.org/10.31857/S0032180X20110064
- Константинова Е.Ю., Сушкова С.Н., Минкина Т.М., Антоненко Е.М., Константинов А.О., Хорошавин В.Ю. Полициклические ароматические углеводороды в почвах промышленных и селитебных зон Тюмени // Известия Томского политех. ун-та. Инжиниринг георесурсов. 2018. Т. 329. № 8. С. 66–79.
- Косяков Д.С., Ульяновский Н.В., Мазур Д.М., Лебедев А.Т. Масс-спектрометрия в исследовании загрязнения атмосферы Арктики // Лаборатория и производство. 2020. № 3–4. С. 56–68.
- Масягина О.В., Токарева И.В., Прокушкин А.С. Моделирование термического воздействия пожаров на физико-химические свойства и микробную активность подстилки криогенных почв // Почвоведение. 2014. № 8. С. 971–971. http://doi.org/10.7868/S0032180X14080097
- Прокушкин А.С., Токарева И.В. Влияние нагревания на органическое вещество лесных подстилок и почв в условиях эксперимента // Почвоведение. 2007. № 6. С. 698–706
- Прокушкин С.Г., Богданов В.В., Прокушкин А.С., Токарева И.В. Послепожарное восстановление органического вещества в напочвенном покрове лиственничников криолитозоны центральной Эвенкии // Известия. РАН. Сер. биологическая. 2011. № 2. С. 227–234.
- СанПиН 1.2.3685–21 “Гигиенические нормативы и требования к обеспечению безопасности и/или безвредности для человека факторов среды обитания”. 2021. https://docs.cntd.ru/document/573500115#6540IN (дата обращения 04.09.2023)
- Сушкова С.Н., Яковлева Е.В., Минкина Т.М., Габов Д.Н., Антоненко Е.М., Дудникова Т.С., Барбашев А.И., Минникова Т.В., Колесников С.И., Раджпут В.Д. Накопление бенз(а)пирена в растениях разных видов и органогенном горизонте почв степных фитоценозов при техногенном загрязнении // Известия Томского политех. ун-та. Инжиниринг георесурсов. 2020. Т. 331. № 12. С. 200–214. https://doi.org/10.18799/24131830/2020/12/2953
- Таскаев А.И. Атлас Республики Коми по климату и гидрологии. М.: Дрофа, 1997. 115 c.
- Хаустов А.П., Редина М.М. Индикаторные соотношения концентраций полициклических ароматических углеводородов в объектах сжигания угольного топлива и биомассы // Антропогенная трансформация природной среды. 2019. № 5. С. 64–71.
- Цибарт А.С., Геннадиев А.Н. Полициклические ароматические углеводороды в почвах: источники, поведение, индикационное значение (обзор) // Почвоведение. 2013. № 7. С. 788–788. https://doi.org/10.7868/S0032180X13070125
- Яковлева Е.В., Безносиков В.А., Кондратенок Б.М., Габов Д.Н., Василевич М.И. Биоаккумуляция полициклических ароматических углеводородов в системе почва растение // Агрохимия. 2008. № 9. С. 66–74.
- Яковлева Е.В., Габов Д.Н., Василевич Р.С., Гончарова Н.Н. Участие растений в формировании состава полициклических ароматических углеводородов торфяников // Почвоведение. 2020. № 3. С. 316–329. https://doi.org/10.31857/S0032180X20030107
- Яковлева Е.В., Габов Д.Н., Василевич Р.С. Формирование состава полициклических ароматических углеводородов бугристых болот в зональном ряду лесотундра–северная тундра // Почвоведение. 2022. № 3. С. 296–314. https://doi.org/10.31857/S0032180X22030145
- Araya S.N., Fogel M.L., Berhe A.A. Thermal alteration of soil organic matter properties: A systematic study to infer response of Sierra Nevada climosequence soils to forest fires // Soil. 2017. V. 3. P. 31–44. https://doi.org/10.5194/soil-3-31-2017
- Atanassova I., Brümmer G.W. Polycyclic aromatic hydrocarbons of anthropogenic and biopedogenic origin in a colluviated hydromorphic soil of Western Europe // Geoderma. 2004. V. 120. № 1. P. 27–34. https://doi.org/10.1016/j.geoderma.2003.08.007
- Biache C., Mansuy-Huault L., Faure P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications // J. Hazardous Mater. 2014. V. 267. P. 31–39. https://doi.org/10.1016/j.jhazmat.2013.12.036
- Broll G., Brauckmann H.J., Overesch M., Junge B., Erber C., Milbert G., Baize D., Nachtergaele F. Topsoil characterization: recommendations for revision and expansion of the FAO-draft (1998) with emphasis on humus forms and biological factors // J. Plant Nutrition Soil Sci. 2006. V. 169. № 3. P. 453–461. https://doi.org/10.1002/jpln.200521961
- Campos I., Abrantes N., Pereira P., Micaelo A.C., Vale C., Keizer J.J. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem // Land Degrad. Dev. 2019. V. 30. № 18. P. 2360–2370. https://doi.org/10.1002/ldr.3427
- Certini G. Effects of fire on properties of forest soils: A review // Oecologia. 2005. T. 143. P. 1–10. https://doi.org/10.1007/s00442-004-1788-8
- Certini G. Fire as a soil-forming factor // Ambio. 2014. V. 43. № 2. P. 191–195. https://doi.org/10.1007/s13280-013-0418-2
- Chen H., Chow A.T., Li X.W., Ni H.G., Dahlgren R.A., Zeng H., Wang J.J. Wildfire burn intensity affects the quantity and speciation of polycyclic aromatic hydrocarbons in soils // ACS Earth and Space Chemistry. 2018. V. 2. № 12. P. 1262–1270. https://doi.org/10.1021/acsearthspacechem.8b00101
- Chen Y., Hu F.S., Lara M.J. Divergent shrub-cover responses driven by climate, wildfire, and permafrost interactions in Arctic tundra ecosystems // Glob. Change Biol. 2021. V. 27. № 3. P. 652–663. https://doi.org/10.1111/gcb.15451
- DeBano L.F. The role of fire and soil heating on water repellency in wildland environments: A review // J. Hydrol. 2000. V. 231. P. 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
- Devi P., Saroha A.K. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge // Bioresour. Technol. 2015. V. 192. P. 312–320. https://doi.org/10.1016/j.biortech.2015.05.084
- Dymov A.A., Abakumov E.V., Bezkorovaynaya I.N., Prokushkin A.S., Kuzyakov Y.V., Milanovsky E.Y. Impact of forest fire on soil properties (review) // Theor. Appl. Ecol. 2018. № 4. P. 13–23. https://doi.org/10.25750/1995-4301-2018-4-013-023
- Dymov A.A., Gabov D.N. Pyrogenic alterations of Podzols at the North-east European part of Russia: Morphology, carbon pools, PAH content // Geoderma. 2015. V. 241. P. 230–237.
- Dymov A.A., Grodnitskaya I.D., Yakovleva E.V., Dubrovskiy Y.A., Kutyavin I.N., Startsev V.V., Prokushkin A.S. Albic Podzols of Boreal Pine Forests of Russia: Soil Organic Matter, Physicochemical and Microbiological Properties across Pyrogenic History // Forests. 2022. V. 13. № 11. P. 1831. https://doi.org/10.3390/f13111831
- Dymov A.A., Startsev V.V., Yakovleva E.V., Dubrovskiy Y.A., Milanovsky E.Y., Severgina D.A., Prokushkin A.S. Fire-Induced Alterations of Soil Properties in Albic Podzols Developed under Pine Forests (Middle Taiga, Krasnoyarsky Kray) // Fire. 2023. V. 6. № 2. P. 67. https://doi.org/10.3390/fire6020067
- Frandsen W.H. Ignition probability of organic soils // Can. J. Forest Res. 1997. V. 27. P. 1471–1477. https://doi.org/10.1139/x97-106
- Froehner S., de Souza D.B., Machado K.S., Falcao F., Fernandes C.S., Bleninger T., Neto D.M. Impact of coal tar pavement on polycyclic hydrocarbon distribution in lacustrine sediments from non-traditional sources // Int. J. Environ. Sci. Technol. 2012. V. 9. P. 327–332. https://doi.org/10.1007/s13762-012-0044-8
- Gabov D., Yakovleva E., Vasilevich R. Vertical distribution of PAHs during the evolution of permafrost peatlands of the European arctic zone // Appl. Geochem. 2020. V. 123. P. 104790. https://doi.org/10.1016/j.apgeochem.2020.104790
- Giovannini G., Lucchesi S., Giachetti M. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility // Soil Sci. 1988. V. 146. № 4. P. 255–261. https://doi.org/10.1097/00010694-198810000-00006
- Gleixner G., Czimczik C.J., Kramer C., Lühker B., Schmidt M.W. Plant compounds and their turnover and stabilization as soil organic matter // Glob. Biogeochem. Cycles Clim. Syst. 2001. P. 201–215. https://doi.org/10.1016/B978-012631260-7/50017-0
- Goldammer J.G., Furyaev V.V. Fire in ecosystems of boreal Eurasia: Ecological impacts and links to the global system // Fire in ecosystems of Boreal Eurasia. Dordrecht: Springer Netherlands. 1996. P. 1–20. https://doi.org/10.1007/978-94-015-8737-2_1
- Gorbach N.M., Startsev V.V., Mazur A.S., Milanovskiy E.Y., Prokushkin A.S., Dymov A.A. Simulation of smoldering combustion of organic horizons at pine and spruce boreal forests with lab-heating experiments // Sustainability. 2022. V. 14. № 24. P. 16772. https://doi.org/10.3390/su142416772
- Hale S.E., Lehmann J., Rutherford D., Zimmerman A.R., Bachmann R.T., Shitumbanuma V., O’Toole A., Sundqvist K.L., Arp H.P.H., Cornelissen G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars // Environ. Sci. Technol. 2012. V. 46. № 5. P. 2830–2838. https://doi.org/10.1021/es203984k
- Harper A.R., Santín C., Doerr S.H., Froyd C.A., Albini D., Otero X.L., Pérez-Fernández B. Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna // Int. J. Wildland Fire. 2019. V. 28. № 10. P. 726–737. https://doi.org/10.1071/WF18200
- Iglesias T., Cala V., Gonzalez J. Mineralogical and chemical modifications in soils affected by a forest fire in the Mediterranean area // Sci. Total Environ. 1997. V. 204. № 1. P. 89–96. https://doi.org/10.1016/S0048-9697(97)00173-3
- Ivanov A.V., Neumann M., Darman G.F., Danilov A.V., Susloparova E.S., Solovyov I.D., Bryanin S. Vulnerability of larch forests to forest fires along a latitudinal gradient in eastern Siberia // Can. J. For. Res. 2022. Т. 52. № 12. P. 1543–1552. https://doi.org/10.1139/cjfr-2022-0161
- Jenkins B.M., Jones A.D., Turn S.Q., Williams R.B. Particle concentrations, gas-particle partitioning, and species intercorrelations for polycyclic aromatic hydrocarbons (PAH) emitted during biomass burning // Atmos. Environ. 1996. V. 30. № 22. P. 3825–3835. https://doi.org/10.1016/1352-2310(96)00084-2
- Jian M., Berhe A.A., Berli M., Ghezzehei T.A. Vulnerability of physically protected soil organic carbon to loss under low severity fires // Front. Environ. Sci. 2018. V. 6. P. 66. http://doi.org/10.3389/fenvs.2018.00066
- Kim E.J., Choi S.D., Chang Y.S. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea // Environ. Sci. Pollut. Res. 2011. V. 18. P. 1508– 1517. http://doi.org/10.1007/s11356-011-0515-3
- Knicker H. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments // Quat. Int. 2011. Т. 243. № 2. P. 251–263. https://doi.org/10.1016/j.quaint.2011.02.037
- Kosyakov D.S., Ul’yanovskii N.V., Latkin T.B., Pokryshkin S.A., Berzhonskis V.R., Polyakova O.V., Lebedev A.T. Peat burning – An important source of pyridines in the earth atmosphere // Environ. Pollut. 2020. Т. 266. P. 115109. https://doi.org/10.1016/j.envpol.2020.115109
- Lide D.R. CRC Handbook of Chemistry and Physics. CRC Press: Boca Raton. 2004. V. 85. P. 2712.
- Lodygin E., Abakumov E., Nizamutdinov T. The content of polyarenes in soils of antarctica: Variability across landscapes // Land. 2021. V. 10. № 11. P. 1162. https://doi.org/10.3390/land10111162
- McGrath T.E., Chan W.G., Hajaligol M.R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose // J. Anal. Appl. Pyrolysis. 2003. V. 66. № 1–2. P. 51–70. https://doi.org/10.1016/S0165-2370(02)00105-5
- Mizwar A., Trihadiningrum Y. PAH contamination in soils adjacent to a coal-transporting facility in Tapin District, South Kalimantan, Indonesia // Archives of Environmental Contamination and Toxicology. 2015. V. 69. P. 62–68. https://doi.org/10.1007/s00244-015-0141-z
- Negri S., Stanchi S., Celi L., Bonifacio E. Simulating wildfires with lab-heating experiments: Drivers and mechanisms of water repellency in alpine soils // Geoderma. 2021. V. 402. P. 115357. http://doi.org/10.1016/j.geoderma.2021.115357
- Ngole-Jeme V.M. Fire-induced changes in soil and implications on soil sorption capacity and remediation methods // Appl. Sci. 2019. V. 9. № 17. P. 3447. http://doi.org/10.3390/app9173447
- Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Köppen-Geiger climate classification // Hydrol. Earth Syst. Sci. 2007. V. 11. № 5. P. 1633–1644. http://doi.org/10.5194/hess-11-1633-2007
- Peng C., Ouyang Z., Wang M., Chen W., Li X., Crittenden J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators // Environ. Pollut. 2013. V. 178. P. 426–432. https://doi.org/10.1016/j.envpol.2013.03.058
- Potapov A.M., Sun X., Barnes A.D., Briones M.J., Brown G.G., Cameron E.K., Chang C.-H., Cortet J., Eisenhauer N., Franco A.L., Fujii S., Geisen S., Guerra C., Gongalsky K., Haimi J., Handa I.T., Janion-Sheepers C., Karaban K., Lindo Z., Wall D. Global monitoring of soil animal communities using a common methodology // Soil Org. 2022. V. 94. № 1. P. 55–68. https://doi.org/10.25674/so94iss1id178
- Qu Y., Gong Y., Ma J., Wei H., Liu Q., Liu L., Chen Y. Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China // Environ. Pollut. 2020. V. 260. P. 114016. https://doi.org/10.1016/j.envpol.2020.114016
- Santín C., Knicker H., Fernández S., Menéndez-Duarte R., Álvarez M.Á. Wildfires influence on soil organic matter in an Atlantic mountainous region (NW of Spain) // Catena. 2008. V. 74. № 3. P. 286–295. https://doi.org/10.1016/j.catena.2008.01.001
- Santín C., Doerr S.H. Fire effects on soils: The human dimension // Philos. Trans. R. Soc. B Biol. Sci. 2016. V. 371. P. 20150171. http://doi.org/10.1098/rstb.2015.0171
- Startsev V.V., Yakovleva E.V., Kutyavin I.N., Dymov A.A. Fire impact on carbon pools and basic properties of retisols in native spruce forests of the European North and Central Siberia of Russia // Forests. 2022. V. 13. № 7. P. 1135. https://doi.org/10.3390/f13071135
- Tang L., Tang X., Zhu Y.G., Zheng M.H., Miao Q.L. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China // Environ. Int. 2005. V. 31. P. 822–828. https://doi.org/10.1016/j.envint.2005.05.031
- Tobiszewski M., Namieњnik J. PAH diagnostic ratios for the identification of pollution emission sources // Environ. Pollut. 2012. V. 162. P. 110–119. https://doi.org/10.1016/j.envpol.2011.10.025
- Tsibart A.S., Gennadiev A.N., Koshovskii T.S. Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia) // Solid Earth. 2014. V. 5. № 2. P. 1305–1317. https://doi.org/10.5194/se-5-1305-2014
- Turetsky M.R., Benscoter B., Page S., Rein G., Van Der Werf G.R., Watts A. Global vulnerability of peatlands to fire and carbon loss // Nat. Geosci. 2015. V. 8. № 1. P. 11–14. https://doi.org/10.1038/NGEO2325
- Uhler A.D., Emsbo-Mattingly S.D. Environmental stability of PAH source indices in pyrogenic tars // Bull. Environ. Contam. Toxicol. 2006. V. 76. P. 689–696. https://doi.org/10.1007/s00128-006-0975-1
- Wei T., Simko V.R. Package “Corrplot”: Visualization of a Correlation Matrix (Version 0.92). Package Corrplot for R Software. 2021. 26 p.
- Wickham H., Bryan J. Readxl: Read Excel Files R Package Version 1.3.1. R Package. Vienna, Austria. 2019. P. 10.
- Yakovleva E.V., Gabov D.N. Polyarenes accumulation in tundra ecosystem influenced by coal industry of Vorkuta // Pol. Polar Res. 2020. V. 41. № 3. P. 237–267. https://doi.org/10.24425/ppr.2020.134122
- Yang B., Shi Y., Xu S., Wang Y., Kong S., Cai Z., Wang J. Polycyclic aromatic hydrocarbon occurrence in forest soils in response to fires: a summary across sites // Environ. Sci.: Process. Impacts. 2022. V. 24. № 1. P. 32–41. https://doi.org/10.1039/D1EM00377A
- Young A.M., Higuera P.E., Duffy P.A., Hu F.S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change // Ecography. 2016. V. 40. P. 606–617. http://doi.org/10.1111/ecog.02205
- Yunker M.B., Macdonald R.W., Vingarzan R., Mitchell R.H., Goyette D., Sylvestre S. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition // Org. Geochem. 2002. V. 33. № 4. P. 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5
- Zhang W., Zhang S., Wan C., Yue D., Ye Y., Wang X. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall // Environ. Pollut. 2008. V. 153. № 3. P. 594–601. https://doi.org/10.1016/j.envpol.2007.09.004
Supplementary files
