Assessment of Enzymatic Activity of Haplic Chernozem Soils Contaminated with Ag, Bi, Te, and Tl

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Enzymatic activity of soils is the most important diagnostic indicator of the ecological state of soils under various types of anthropogenic impact. The aim of the study was to evaluate the enzymatic activity of common chernozem (Haplic Chernozem) under Ag, Bi, Te, and Tl contamination. 10 enzymes (catalase, dehydrogenase, peroxidase, polyphenol oxidase, ascorbate oxidase, ferrireductase, protease, phosphatase, invertase and urease) were analyzed. According to the degree of inhibition of enzymes, heavy metals form the following sequence: Tl > Ag > Bi > Te. With an increase in the concentration of heavy metals, the toxic effect on the activity of enzymes increases. The oxidoreductases showed greater sensitivity to Ag, Bi, Te, and Tl contamination than hydrolases. Among oxidoreductases, the highest sensitivity was found for ferrireductase, and the lowest for ascorbate oxidase. According to the activity of enzymes of the hydrolase class, invertase is the most sensitive, and urease is the least sensitive. When contaminated with Ag, Bi, and Te, invertase has the highest informative value, and when contaminated with Tl, urease and polyphenol oxidase are the most informative. Among the enzymes of the oxidoreductase class, the highest informativeness was found in peroxidase, and the lowest in ascorbate oxidase. Among the enzymes of the hydrolase class, invertase is the most sensitive, and phosphatase is the least sensitive. The results of the study can be used to assess the ecological state of soils contaminated with Ag, Bi, Te and Tl.

About the authors

T. V. Minnikova

Southern Federal University

Author for correspondence.
Email: tminnikova@sfedu.ru
Russian Federation, Rostov-on-Don

S. I. Kolesnikov

Southern Federal University

Email: tminnikova@sfedu.ru
Russian Federation, Rostov-on-Don

N. A. Evstegneeva

Southern Federal University

Email: tminnikova@sfedu.ru
Russian Federation, Rostov-on-Don

A. N. Timoshenko

Southern Federal University

Email: tminnikova@sfedu.ru
Russian Federation, Rostov-on-Don

N. I. Tsepina

Southern Federal University

Email: tminnikova@sfedu.ru
Russian Federation, Rostov-on-Don

K. Sh. Kazeev

Southern Federal University

Email: tminnikova@sfedu.ru
Russian Federation, Rostov-on-Don

References

  1. Водяницкий Ю.Н. Загрязнение почв тяжелыми металлами и металлоидами и его экологическая опасность (аналитический обзор) // Почвоведение. 2013. № 7. С. 772–881. https://doi.org/10.1134/S1064229313050153
  2. Дружинин А.В., Карелина Е.В. Основные типы месторождений технического серебра // Вестник Рос. ун-та дружбы народов: Сер. инженерных исследований. 2008. № 1. С. 35–41.
  3. Евстегнеева Н.А., Колесников С.И., Минникова Т.В., Тимошенко А.Н. Оценка токсичности тяжелых металлов, металлоидов и неметаллов, содержащихся в отходах добычи полезных ископаемых // Горный информационно-аналитический бюл. 2023. Т. 5-1. C. 73–85. https://doi.org/10.25018/0236_1493_2023_51_0_73
  4. Иванищев В.В. Доступность железа в почве и его влияние на рост и развитие растений // Известия Тульского гос. ун-та. Естественные науки. 2019. № 3. С. 127–138.
  5. Ляпунов М.Ю. Закономерности распределения химических элементов в почвах Пионерского золоторудного месторождения. Геохимия Амурской области // Вестник Томского политех. ун-та. 2014. Т. 325. № 1. С. 57–68.
  6. Минникова Т.В., Мокриков Г.В., Казеев К.Ш., Акименко Ю.В., Колесников С.И. Оценка ферментативной активности черноземов Ростовской области при бинарных посевах подсолнечника // Известия Тимирязевской сельскохозяйственной академии. 2017. № 6. С. 141–155. https://doi.org/10.26897/0021-342X-2017-6-141-155
  7. Минникова Т.В., Мокриков Г.В., Казеев К.Ш., Акименко Ю.В., Колесников С.И. Оценка зависимостей между гидротермическими показателями и ферментативной активностью черноземов Ростовской области при использовании различных агротехнологий // Агрофизика. 2018. № 1. С. 9–17. https://doi.org/10.25695/AGRPH.2018.01.02
  8. Минникова Т.В., Колесников С.И., Денисова Т.В. Влияние азотных и гуминовых удобрений на биохимическое состояние нефтезагрязненного чернозема // Юг России: Экология, развитие. 2019. Т. 14. № 2. С.189–201. https://doi.org/10.18470/1992-1098-2019-2-189-201
  9. Новосёлова Е.И., Волкова О.О., Турьянова Р.Р. Ферментативная трансформация органических остатков в почвах, загрязненных тяжелыми металлами // Экология урбанизированных территорий. 2019. № 1. С. 75–81. https://doi.org/10.24411/1816-1863-2019-11075
  10. Новосёлова Е.И., Волкова О.О., Хазиев Ф.Х., Турьянова Р.Р. Особенности ферментативного дегидрирования органических веществ в почвах, загрязненных тяжелыми металлами // Научная жизнь. 2020. Т. 15. № 10 (110). С. 1312–1320. https://doi.org/10.35679/1991-9476-2020-15-10-1312-1320
  11. Поляк Ю.М., Сухаревич В.И. Почвенные ферменты и загрязнение почв: биодеградация, биоремедиация, биоиндикация // Агрохимия. 2020. № 3. С. 83–93. https://doi.org/10.31857/S0002188120010123.
  12. Хазиев Ф.Х. Методы почвенной энзимологии. М.: Наука, 2005. 252 с.
  13. Якушев А.В., Журавлева А.И., Кузнецова И.Н. Влияние длительной и кратковременных засух на гидролитические ферменты серой почвы // Почвоведение. Почвоведение. 2023. № 6. С. 745–757. https://doi.org/10.31857/S0032180X2260130X
  14. Alekseenko V.A., Alekseenko A.V. Chemical elements in geochemical systems. Clarks of soils in residential landscapes. Rostov n/D: Publishing House of the Southern Federal University. 2013. 380 p.
  15. Cao C., Huang J., Ca W., Yan C., Liu J., Jiang Y. Effects of Silver Nanoparticles on Soil Enzyme Activity of Different Wetland Plant Soil Systems // Soil and Sediment Contamination: Int. J. 2017. V. 26 (5). P. 558–567. https://doi.org/10.1080/15320383.2017.1363158
  16. Eivazi F., Afrasiabi Z., Jose E. Pedosphere Effects of Silver Nanoparticles on the Activities of Soil Enzymes Involved in Carbon and Nutrient Cycling // Pedosphere. 2018. V. 28. P. 209–214. https://doi.org/10.1016/S1002-0160(18)60019-0
  17. Elekes C.C., Busuioc G. The mycoremediation of metals polluted soils using wild growing species of mushrooms // Latest Trends on Engineering Education. Р. 36–39.
  18. Farag M.R., Alagawany M., Khalil S.R., Moustafa A.A., Mahmoud H.K., Abdel-Latife H.M.R. Astragalus membranaceus polysaccharides modulate growth, hemato-biochemical indices, hepatic antioxidants, and expression of HSP70 and apoptosis-related genes in Oreochromis niloticus exposed to sub-lethal thallium toxicity // Fish Shellfish Immunology. 2021. V. 118. P. 251–260. https://doi.org/10.1016/j.fsi.2021.09.009
  19. Filella M., Reimann C., Biver M., Rodushki I., Rodushkina K. Tellurium in the environment: current knowledge and identification of gaps // Environmental Chemistry. 2019. V. 16(4). https://doi.org/10.1071/EN18229
  20. Grösslová Z., Vaněk A., Oborná V., Mihaljevič M., Ettler V., Trubač J., Drahota P. et al. Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights // Environ. Poll. 2018. V. 239 P. 272–280. https://doi.org/10.1016/j.envpol.2018.04.006
  21. Grün A., Straskraba S., Schulz S., Schloter M., Emmerling C. Long-term effects of environmentally relevant concentrations of silver nanoparticles on microbial biomass, enzyme activity, and functional genes involved in the nitrogen cycle of loamysoil // J. Environ. Sci. 2018. V. 69. P. 12–22. https://doi.org/10.1016/j.jes.2018.04.013
  22. Grygoyć K., Jabłońska-Czapla M. Development of a Tellurium Speciation Study Using IC-ICP-MS on Soil Samples Taken from an Area Associated with the Storage, Processing, and Recovery of Electrowaste // Molecules. 2021. V. 26. P. 2651. https://doi.org/10.3390/molecules26092651
  23. Hayes S.M., Ramos N.A. Surficial geochemistry and bioaccessibility of tellurium in semiarid mine tailings // Environ. Chem. 2019. V. 16(4). P. 251–265.
  24. Jones K.C, Davies B.E., Peterson P.J. Silver in Welsh soils: Physical and chemical distribution studies // Geoderma. 1986. V. 37. P. 157–174. https://doi.org/10.1016/0016-7061(86)90028-5
  25. Kabata-Pendias A. Trace Elements in Soils and Plants. Boca Raton, FL: Crc Pressрр. 2010. 548 p.
  26. Karbowska B. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods // Environ. Monit. Assess. 2016. V. 188. P. 640–659.
  27. Kearns J., Turner A. An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga // Environ. Poll. 2016. V. 208. P. 435–441. https://doi.org/10.1016/j.envpol.2015.10.011
  28. Kinraide T.B.; Yermiyahu U. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects // J. Inorg. Biochem. 2007. V. 101. P. 1201–1213.
  29. Kolesnikov S., Minnikova T., Kazeev K., Akimenko Yu., Evstegneeva N. Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region) // Water, Air, Soil Pollution. 2022. V. 233. P. 18. https://doi.org/10.1007/s11270-021-05496-3
  30. Kolesnikov S.I. Impact of Contamination with Tellurium on Biological Properties of Ordinary Chernozem // Soil and Sediment Contamination: Int. J. 2019. V. 28. P. 792–800. https://doi.org/10.1080/15320383.2019.1666793
  31. Kolesnikov S.I., Kazeev K.S., Akimenko Yu.V. Development of regional standards for pollutants in the soil using biological parameters // Environ. Monit. Assess., 2019. 191. 544. https://doi.org/10.1007/s10661-019-7718-3
  32. Kolesnikov S.I., Sudina L.V., Kuzina A.A., Minnikova T.V., Tsepina N.I., Kazeev K.Sh., Akimenko Yu.V. The effect of bismuth contamination on the soil biological properties // Agriculture and Natural Resources. 2022. V. 56. P. 417–428. https://doi.org/10.34044/j.anres.2022.56.2.19
  33. Kolesnikov S.I., Tsepina N.I., Sudina L.V., Minnikova T.V., Kazeev K. Sh., Akimenko Yu.V. Silver Ecotoxicity Estimation by the Soil State Biological Indicators // Appl. Environ. Soil Sci. 2020. P. 1207210. https://doi.org/10.1155/2020/1207210
  34. Kolesnikov S., Tsepina N., Minnikova T., Kazeev K., Mandzhieva S., Sushkova S., Minkina T., Mazarji M., Singh R.K., Rajput V.D. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem // Plants. 2021. V. 10. P. 1022. https://doi.org/ 10.3390/plants10051022
  35. Kolesnikov S., Minnikova T., Minkina T., Rajput V.D., Tsepina N., Kazeev K., Zhadobin A., Nevedomaya E., Ter-Misakyants T., Akimenko Yu., Mandzhieva S., Sushkova S., Ranjan A., Asylbaev I., Popova V., Tymoshenko A. Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study // Environments. 2021. V. 8. P. 119. https://doi.org/10.3390/environments8110119
  36. Liu J., Wang J., Chen Y.H., Shen C.C., Jiang X.Y., Xie X.F., Chen D.Y., Lippold H., Wang C.L. Thallium dispersal and contamination in surface sediments from South China and its source identification // Environ. Poll. 2016. V. 213. P. 878–887. https://doi.org/10.1016/j.envpol.2019.02.089
  37. Liu J., Wang, J., Xiao T.F., Bao Z.A., Lippold H., Luo X.W., Yin M.L., Ren J.M., Chen Y.H., Linghu W.S. Geochemical dispersal of thallium and other metals in sediment profiles from a smelter-impacted area in South China // Appl. Geochem. 2018. V. 88. P. 239–246.
  38. Minnikova T., Kolesnikov S., Revina S., Ruseva A., Gaivoronsky V. Enzymatic Assessment of the State of Oil-Contaminated Soils in the South of Russia after Bioremediation // Toxics. 2023. V. 11. P.355. https://doi.org/10.3390/toxics11040355
  39. Mokrikov G., Minnikova T., Kazeev K., Kolesnikov S. Use of soil enzyme activity in assessing the effect of No-Till in the South of Russia // Agronomy Research. 2021. V. 19. P. 171–184. https://doi.org/10.15159/AR.20.240
  40. Montes de Oca-Vásquez G., Solano-Campos F., Vega-Baudrit J.R, López-Mondéjar R., Vera A., Morenof J. L., Bastidaf F. Organic amendments exacerbate the effects of silver nanoparticles on microbial biomass and community composition of a semiarid soil // Sci. Total Environ. 2020. Vol 744. P. 140919. https://doi.org/10.1016/j.scitotenv.2020.140919
  41. Murata T. Effects of bismuth contamination on the growth and activity of soil microorganisms using thiols as model compounds // J. Environ. Sci. Health A. Tox Hazard Subst. Environ Eng. 2006. V. 41. Р. 161–172. https://doi.org/ 10.1080/10934520500349276
  42. Najimi S., Shakibaie M., Jafari E., Ameri A., Rahimi N., Forootanfar H., Yazdanpanah M., Rahimiae H.R. Acute and subacute toxicities of biogenic tellurium nanorods in mice // Regulatory Toxicology and Pharmacology. 2017. V. 90. P. 222–230. https://doi.org/10.1016/j.yrtph.2017.09.014
  43. Nelson B., Chen Y.-W. Tellurium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry. 2015. V. 63. P. 83–92.
  44. Nelson B., Chen Y.-W. Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles //Appl. Geochem. 2017. V. 84. P. 218–243.
  45. Pavoni E., Petranich E., Adami G., Baracchini E., Crosera M., Emili A., Lenaz D., Higueras P., Covelli S. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommisioned zinc-lead mine (Northeastern Italian Alps) // J. Environ. Manag. 2017. V. 186. P. 214–224.
  46. Perkins W.T. Extreme selenium and tellurium contamination in soils – an eighty year-old industrial legacy surrounding a Ni refinery in the Swansea Valley // Sci. Total Environ. 2011. V. 412–413, P. 162–169.
  47. Peyrot C., Wilkinson K.J, Desrosiers M., Sauvé S. Effects of silver nanoparticles on soil enzyme activities with and without added organic matter // Environ. Toxicology Chem. 2014. V. 33. P. 115–25. https://doi.org/10.1002/etc.2398
  48. Presentato A., Turner R.J., Vásquez C.C., Yurkov V., Zannoni D. Tellurite-dependent blackening of bacteria emerges from the dark ages // Environmental Chemistry. 2019. V. 16(4). P. 266–288.
  49. Pulit-Prociak J., Banach M. Silver nanoparticles – a material of the future? // Open Chem. 2016. V. 14. P. 76–91. https://doi.org/10.1515/chem-2016-0005
  50. Rahmatpour S., Shirvani M., Mosaddeghi M.R., Farshid N., Bazarganipour M. Dose – response effects of silver nanoparticles and silver nitrate on microbial and enzyme activities in calcareous soils // Geoderma. 2017. V. 285. Р. 313–322. https://doi.org/10.1016/j.geoderma.2016.10.006
  51. Samarajeewa A.D., Velicogna J.R., Princz J.I., Subasinghe R.M., Scroggins R.P., Beaudette L.A. Effect of silver nano-particles on soil microbial growth, activity and community diversity in a sandy loam soil // Environ. Poll. 2017. V. 220. P. 504–513.
  52. Shin Y.J, Kwak J.I, An Y.J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes // Chemosphere. 2012. V. 88. P. 524–529. https://doi.org/10.1016/j.chemosphere.2012.03.010
  53. Stangherlin E.C., Ardais A.P., Rocha J.B.T., Nogueira C.W. Exposure to diphenyl ditelluride, via maternal milk, causes oxidative stress in cerebral cortex, hippocampus and striatum of young rats // Arch. Toxicol. 2009. 83. P. 485–491.
  54. Sudina L., Kolesnikov S., Minnikova T., Kazeev K., Sushkova S., Minkina T. Assessment of ecotoxicity of the bismuth by biological indicators of soil condition // Eur. J. Soil Sci. 2021. V. 10. P. 236–242. https://doi.org/10.18393/ejss.926759
  55. Tabatabai M.A., Dick W.A. Enzymes in soil: research and developments in measuring activities // Enzymes in the environment: Activity, ecology, and applications. N.Y.: Marcel Dekker, 2002. P. 567–596.
  56. Tighe M., Heidi B., Knaub C., Sisk M., Peaslee F.G., Lieberman M. Risky bismuth: Distinguishing between lead contamination sources in Soil // Chemosphere. 2019. V. 234. Р. 297–301.
  57. Tóth G., Montanarella L., Stolbovoy V., Máté F., Bódis K., Jones A., Panagos P., van Liedekerke M. Soils of the European Union. Luxembourg: Office for Official Publications of the European Communities. 2008. 85 p.
  58. Wiklund J.A., Kirk J.L., Muir D.C.G., Carrier J., Gleason A., Yang F., Evans M., Keating J. Widespread Atmospheric Tellurium Contamination in Industrial and Remote Regions of Canada // Environ. Sci. Technol. 2018. V. 52. P. 6137–6145. https://doi.org/10.1021/acs.est.7b06242
  59. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition published in 2022 by the International Union of Soil Sciences (IUSS), Vienna, 2022, 234 p.
  60. Xing G., Zhu J., Xiong Z. Ag, Ta, Ru, and Ir enrichment in surface soil: Evidence for land pollution of heavy metal from atmospheric deposition // Global Biogeochem Cycles. 2004. V. 18. https://doi.org/10.1029/2003GB002123
  61. Yan C., Huang J., Cao C., Li R., Ma Y., Wang Y. Effects of PVP-coated silver nanoparticles on enzyme activity, bacterial and archaeal community structure and function in a yellow-brown loam soil // Environ. Sci. Poll. Res. 2020. V. 27. P. 8058–8070.
  62. Yang G., Zheng J., Tagami K., Uchida S. Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry // Talanta. 2013. V. 116. P. 181–187.
  63. Yildirim D., Sasmaz A. Phytoremediation of As, Ag, and Pb in contaminated soils using terrestrial plants grown on Gumuskoy mining area (Kutahya Turkey) // J. Geochem. Exploration. 2017. V. 182. P. 228–234. https://doi.org/10.1016/j.gexplo.2016.11.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme and stages of the model experiment.

Download (216KB)
3. Fig. 2. Changes in the activity of enzymes of oxidoreductase class at contamination of ordinary chernozem with oxides and nitrates of Ag, Bi, Tl and Te: a - catalase (in ml O2/(g 1 min)); b - dehydrogenase (mg THF/(g 24 h)); c - peroxidase (mg 1, 4 benzoquinone/(g 30 min)).

Download (486KB)
4. Fig. 3. Changes in the activity of enzymes of oxidoreductase class under contamination of ordinary chernozem with oxides and nitrates of Ag, Bi, Tl and Te: a - polyphenol oxidase (mg 1, 4 benzoquinone/(g 30 min)); b - ascorbatoxidase (mg DGAC/(g h)); c - ferrireductase (mg Fe2O3/(100 g 48 h)).

Download (496KB)
5. Fig. 4. Changes in the activity of hydrolase class enzymes under contamination of ordinary chernozem with oxides and nitrates of Ag, Bi, Tl and Te: a - invertase (mg glucose/(g 24 h)); b - urease (mg NH3/(g 24 h)).

Download (420KB)
6. Fig. 5. Changes in the activity of hydrolase class enzymes under contamination of ordinary chernozem with oxides and nitrates of Ag, Bi, Tl and Te: a - protease (mg glycine/(g 24 h)); b - phosphatase (µg p-nitrophenol/(g h)).

Download (351KB)
7. Fig. 6. Changes in the integral index of enzymatic activity of ordinary chernozem under contamination with oxides and nitrates of Ag, Bi, Tl and Te: a - oxidoreductase class; b - hydrolase class.

Download (393KB)

Copyright (c) 2024 Russian Academy of Sciences