Assessment of the Ecotoxicity of Thallium According to the Biological Properties of Soils
- Authors: Evstegneeva N.A.1, Kolesnikov S.I.1, Timoshenko A.N.1, Minnikova T.V.1, Tsepina N.I.1, Kazeev K.S.1
-
Affiliations:
- Southern Federal University
- Issue: No 3 (2024)
- Pages: 470-481
- Section: DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/666657
- DOI: https://doi.org/10.31857/S0032180X24030076
- EDN: https://elibrary.ru/YIETLR
- ID: 666657
Cite item
Abstract
In laboratory model experiments, the ecotoxicity of Tl was assessed by changing the microbiological, biochemical and phytotoxic properties of soils in the South of Russia: ordinary chernozem (Haplic Chernozem (Loamic)), seropesks (Eutric Arenosol) and brown forest slightly unsaturated soil (Eutric Cambisol), differing in granulometric composition, pH and organic matter content. As a rule, there was a direct relationship between the concentration of Tl and the degree of deterioration of the studied soil properties. Tl nitrate showed higher ecotoxicity than oxide. The strongest ecotoxic effect of Tl was manifested on chernozem and seropesks 10 days after contamination, on brown forest soil — 30 days later. Restoration of biological properties of soils was observed for 90 days. Ordinary chernozem showed the greatest resistance to Tl contamination, and seropeski showed the least. The results obtained indicate a high ecotoxicity of Tl.
Full Text
##article.viewOnOriginalSite##About the authors
N. A. Evstegneeva
Southern Federal University
Author for correspondence.
Email: evstegneeva@sfedu.ru
Russian Federation, Rostov-on-Don
S. I. Kolesnikov
Southern Federal University
Email: evstegneeva@sfedu.ru
Russian Federation, Rostov-on-Don
A. N. Timoshenko
Southern Federal University
Email: evstegneeva@sfedu.ru
Russian Federation, Rostov-on-Don
T. V. Minnikova
Southern Federal University
Email: evstegneeva@sfedu.ru
Russian Federation, Rostov-on-Don
N. I. Tsepina
Southern Federal University
Email: evstegneeva@sfedu.ru
Russian Federation, Rostov-on-Don
K. Sh. Kazeev
Southern Federal University
Email: evstegneeva@sfedu.ru
Russian Federation, Rostov-on-Don
References
- Алабушев А.В. Экспортные поставки и современное состояние рынка зерна пшеницы в России и мире // Достижения науки и техники АПК. 2019. Т. 33. № 2. С. 68–70.
- Водяницкий Ю.Н. Нормативы содержания тяжелых металлов и металлоидов в почвах // Почвоведение. 2012. № 3. С. 368–368.
- Гринвуд Н., Эрншо А. Химия элементов. М.: Бином, 2008. Т. 2. 670 с.
- Ильин В.Б., Конарбаева Г.А. Таллий в почвах юга Западной Сибири // Почвоведение. 2000. № 6. С. 701–705.
- Казеев К.Ш., Колесников С.И., Акименко Ю.В., Даденко Е.В. Методы биодиагностики наземных экосистем. Ростов н/Д.: Изд-во ЮФУ, 2016. 356 с.
- Касимов Н.С., Власов Д.В. Технофильность химических элементов в начале XXI века // Вестник Моск. ун-та. Сер. 5, география. 2012. № 1. С. 15–22.
- Колесников С.И., Евреинова А.В., Казеев К.Ш., Вальков В.Ф. Изменение эколого-биологических свойств чернозема при загрязнении тяжелыми металлами второго класса опасности (Mo, Co, Cr, Ni) // Почвоведение. 2009. № 8. С. 1007–1013.
- Колесников С.И., Казеев К.Ш., Вальков В.Ф. Экологические функции почв и влияние на них загрязнения тяжелыми металлами // Почвоведение. 2002. № 12. 1509–1514.
- Колесников С.И., Казеев К.Ш., Вальков В.Ф. Экологическое состояние и функции почв в условиях химического загрязнения. Ростов-на-Дону: Изд-во Ростиздат, 2006, 385 с.
- Колесников, С.И., Спивакова Н.А., Казеев К.Ш. Влияние модельного загрязнения Cr, Cu, Ni, Pb на биологические свойства почв сухих степей и полупустынь юга России // Почвоведение. 2011. № 9. С. 1094–1101.
- Копцик С.В, Копцик Г.Н. Оценка современных рисков избыточного накопления тяжелых металлов в почвах на основе концепции критических нагрузок (обзор) // Почвоведение. 2022. № 5. С. 615–630.
- Минкина Т.М., Мотузова Г.В., Назаренко О.Г. Взаимодействие тяжелых металлов с органическим веществом чернозема обыкновенного // Почвоведение. 2006. № 7. С. 804–811.
- Поляк Ю.М., Сухаревич В.И. Почвенные ферменты и загрязнение почв: биодеградация, биоремедиация, биоиндикация // Агрохимия. 2020. № 3. С. 83–93. https://doi.org/10.31857/S0002188120010123
- Силяева Е.С. Народнохозяйственное значение озимой пшеницы и ее роль в продовольственной безопасности страны // Научный журнал молодых ученых. 2019. № 4 (17).
- Терехова В.А. Биотестирование экотоксичности почв при химическом загрязнении: современные подходы к интеграции для оценки экологического состояния (обзор) // Почвоведение. 2022. № 5. С. 586–599.
- Терехова В.А., Прудникова Е.В., Кулачкова С.А., Горленко М.В., Учанов П.В., Сушко С.В., Ананьева Н.Д. Микробиологические показатели агродерново-подзолистых почв разной гумусированности при внесении тяжелых металлов и углеродсодержащих препаратов // Почвоведение. 2021. № 3. С. 372–384.
- Тимошенко А.Н., Колесников С.И., Кабакова В.С., Евстегнеева Н.А., Минникова Т.В., Казеев К.Ш., Минкина Т.М. Оценка устойчивости почв к загрязнению наночастицами платины методами биодиагностики // Почвоведение. 2023. № 8. С. 997–1006. https://doi.org/10.31857/S0032180X23600221
- Adimalla N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution // Environ. Geochem. Health. 2020. V. 42 P. 59–75. https://doi.org/10.1007/s10653-019-00270-1
- Al-Najar H., Kaschl A., Schulz R., Römheld V. Effect of thallium fractions in the soil and pollution origins on Tl uptake by hyperaccumulator plants: A key factor for the assessment of phytoextraction // Int. J. Phytorem. 2005. V. 7. P. 55–67. https://doi.org/10.1080/16226510590915837
- Álvarez-Ayuso E., Otones, V., Murciego, A., García-Sánchez, A., Santa Regina, I. Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes // Geoderma. 2013. V. 207. P. 25–34. https://doi.org/10.1016/j.geoderma.2013.04.033
- Antó, M.A.L., Spears D.A., Somoano M.D., Tarazona M.R.M. Thallium in coal: analysis and environmental implications // Fuel. 2013. V. 105. P. 13–18. https://doi.org/10.1016/j.fuel.2012.08.004
- Aponte H., Meli P., Butler B., Paolini J., Matus F., Merino C., Cornejo P., Kuzyakov Y. Meta-analysis of heavy metal effects on soil enzyme activities // Sci. Total Environ. 2020. V. 737. P. 139744. https://doi.org/10.1016/j.scitotenv.2020.139744
- Barsova N., Yakimenko O., Tolpeshta I., Motuzova G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review // Environ. Pollut. 2019, V. 249, P. 200–207. https://doi.org/10.1016/j.envpol.2019.03.020
- Belzile N., Chen Y. W. Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles // Appl. Geochem. 2017. V. 84. P. 218–243. https://doi.org/10.1016/j.apgeochem.2017.06.013
- Carlson H.K., Price M.N., Callaghan M.A. Alex C., Romy L., Hualan K., Jennifer V.A., Adam P.D., Adam M. The selective pressures on the microbial community in a metal-contaminated aquifer // The ISME journal. 2019. V. 13. P. 937–949. https://doi.org/10.1038/s41396-018-0328-1
- CCME (Canadian Council of Ministers of the Environment), 2010. Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). Scientific Criteria Document (revised), 2010. 216 p.
- D’Orazio M., Campanella B., Bramanti E., Ghezzi, L., Onor M., Vianello G., Vittori-Antisari L., Petrini R. Thallium pollution in water, soils and plants from a past-mining site of Tuscany: Sources, transfer processes and toxicity // J. Geochem. Exploration. 2020. V. 209. P. 106434. https://doi.org/10.1016/j.gexplo.2019.106434
- Gadd G.M. Metals, minerals and microbes: geomicrobiology and bioremediation // Microbiology. 2010. V. 156. P. 609–643. https://doi.org/10.1099/mic.0.037143-0
- Gianfreda L., Rao M.A. Potential of extra cellular enzymes in remediation of polluted soils: a review // Enzyme Microb. Technol. 2004. V. 35. P. 339–354. http://dx.doi.org/10.1016/j.enzmictec.2004.05.006
- Grösslová Z., Vaněk A., Mihaljevič M., Ettler V., Hojdová M., Zádorová T., Ash C. Bioaccumulation of thallium in a neutral soil as affected by solid-phase association // J. Geochem. Explorat. 2015. V. 159. P. 208–212. https://doi.org/10.1016/j.gexplo.2015.09.009
- Grösslovà Z., Vanèk A., Obornà V., Mihaljevìc M., Ettler V., Trubač J., Drahota P., Penízek V., Pavlù L., Sracek O. Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights // Environ. Pollut. 2018. V. 239. P. 272–280. https://doi.org/10.1016/j.envpol.2018.04.006
- Hsu Y.C., Thia E., Chen P.J. Monitoring of ion release, bioavailability and ecotoxicity of thallium in contaminated paddy soils under rice cultivation conditions // J. Hazard. Mater. 2022. V. 424. P. 126513. https://doi.org/10.1016/j.jhazmat.2021.126513
- Jiang H.H., Cai L.M., Wen H.H., Hu G.C., Chen L.G., Luo J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals // Sci. Total Environ. 2020. V. 701. P. 134466. https://doi.org/10.1016/j.scitotenv.2019.134466
- Kabata-Pendias A. Trace Elements in Soils and Plants. Boca Raton, FL: Crc Press, 2010. 548 p.
- Karbowska B. Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods // Environ. Monit. Assess. 2016. V. 188. P. 640. https://doi.org/10.1007/s10661-016-5647-y
- Kazantzis G. Thallium in the environment and health effects // Environ. Geochem. Health. 2000. V. 22. P. 275–280. https://doi.org/10.1023/A:1006791514080
- Kolesnikov S., Minnikova T., Kazeev K., Akimenko Y., Evstegneeva N. Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region) // Water, Air, Soil Pollut. 2022. V. 233. P. 18. https://doi.org/10.1007/s11270-021-05496-3
- Kolesnikov S., Tsepina N., Minnikova T., Kazeev K., Mandzhieva S., Sushkova S., Minkina T., Mazarji M., Singh R.K., Rajput V.D. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem // Plants. 2021. V. 10. P. 1022. https://doi.org/10.3390/plants10051022
- Kolesnikov S.I., Kazeev K.S., Akimenko Y.V. Development of regional standards for pollutants in the soil using biological parameters // Environ. Monit. Assess. 2019. V. 191. P. 544. https://doi.org/10.1007/s10661-019-7718-3
- Kolesnikov S.I., Tsepina N.I., Sudina L., Minnikova T.V., Kazeev K.S., Akimenko Y.V. Silver ecotoxicity estimation by the soil state biological indicators // Appl. Environ. Soil Science. 2020. V. 2020. P. 1207210. https://doi.org/10.1155/2020/1207210
- Lacoste C., Robinson B., Brooks R. Uptake of thallium by vegetables: Its significance for human health, phytoremediation, and phytomining // J. Plant Nutrition. 2001. V. 24. P. 1205–1215. https://doi.org/10.1081/PLN-100106976
- Lee J.H., Kim D.J., Ahn B.K. Distributions and concentrations of thallium in Korean soils determined by single and sequential extraction procedures // Bull. Environ. Contam. Toxicol. 2015. V.94. P. 756–763. https://doi.org/10.1007/s00128-015-1533-5
- Liu J. Luo X., Wang J., Xiao T., Chen D., Sheng G., Chen Y. Thallium contamination in arable soils and vegetables around a steel plant—A newly-found significant source of Tl pollution in South China // Environ. Pollut. 2017. V. 224. P. 445–453. https://doi.org/10.1016/j.envpol.2017.02.025
- Liu J., Yin M., Luo X., Xiao T., Wu Z., Li N., Chen Y. The mobility of thallium in sediments and source apportionment by lead isotopes // Chemosphere. 2019. V. 219. P. 864–874. https://doi.org/10.1016/j.chemosphere.2018.12.041
- Liu J., Li N., Zhang W., Wei X., Tsang D.C.W., Sun Y., Luo X., Bao Z., Zheng W., Wang J. Thallium contamination in farmlands and common vegetables in a pyritemining city and potential health risks // Environ. Pollut. 2019. V. 248. P. 906–915. https://doi.org/10.1016/j.envpol.2019.02.092
- Liu J., Wang J., Chen Y., Shen C.-C., Jiang X., Xie X., Chen D., Lippold H., Wang C. Thallium dispersal and contamination in surface sediments from South China and its source identification // Environ. Pollut. 2016. V. 213. P. 878–887. https://doi.org/10.1016/j.envpol.2016.03.023
- Luo Y., Pang J., Li C., Sun J., Xu Q., Ye J., Shi J. Long-term and high-bioavailable potentially toxic elements (PTEs) strongly influence the microbiota in electroplating sites // Sci. Total Environ. 2022. V. 814. P. 151933. https://doi.org/10.1016/j.scitotenv.2021.151933
- Mazur R., Sadowska M., Kowalewska Ł., Abratowska A., Kalaji H.M., Mostowska A., Garstka M., Krasnodębska-Ostręga B. Overlapping toxic effect of long-term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity // BMC Plant Biol. 2016. V. 16. P. 191. https://doi.org/10.1186/s12870-016-0883-4
- McFeters G.A., Yu F.P., Pyle B.H., Stewart P.S. Physiological assessment of bacteria using fluorochromes // J. Microbiol. Methods. 1995. V. 21. P. 1–13. https://doi.org/10.1016/0167-7012(94)00027-5
- Meeravali N. N., Madhavi K., Sahayam A. C. Determination of thallium in vegetative plant leaves near industrial areas by high-resolution continuum source electrothermal atomic absorption spectrometry after salt induced cloud point extraction // Spectrochimica Acta Part B: Atomic Spectroscopy. 2023. V. 200. P. 106613. https://doi.org/10.1016/j.sab.2022.106613
- MEP&MLP (Ministry of Environment Protection and Ministry of Land Resources of the People’s Republic of China). Nationwide Soil Pollution Survey Report, 2014. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm
- Mishra S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., Chowdhary, P. Heavy metal contamination: an alarming threat to environment and human health // Environmental biotechnology: For sustainable future. 2019. P. 103–125. https://doi.org/10.1007/978-981-10-7284-0_5
- Sasmaz A., Sen O., Kaya G., Yaman M., Sagiroglu A. Distribution of thallium in soil and plants growing in the keban mining district of Turkey and determined by ICP-MS // At. Spectrosc. 2007. V. 28960. P. 157–163.
- Sharma R., Agrawal M. Biological effects of heavy metals: An overview // J. Environ. Biol. 2005. V. 26. P. 301–313.
- She J., Liu J., He H., Zhang Q., Lin Y., Wang J., Yin M., Wang L., Wei X., Huang Y. Microbial response and adaption to thallium contamination in soil profiles // J. Hazard. Mater. 2021. V. 423. P. 127080. https://doi.org/10.1016/j.jhazmat.2021.127080
- Sun L., Guo D., Liu K., Meng H., Zheng Y., Yuan F., Zhu G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China // Catena. 2019. V. 175. P. 101–109. https://doi.org/10.1016/j.catena.2018.12.014
- Tremel A., Masson P., Sterckeman T., Baize D., Mench M. Thallium in French agrosystems. I. Thallium contents in arable soils // Environ. Pollut. 1997. V. 95. P. 293–302. https://doi.org/10.1016/S0269-7491(96)00145-5
- USEPA (United States Environmental Protection Agency), 2018. Regional Screening Levels (RSLs)-Generic Tables, 2018. https://www.epa.gov/risk/regional-screening-levels-rsls
- Vaněk A., Grösslová Z., Mihaljevič M., Ettler V., Trubač J., Chrastný V., Ash C. Thallium isotopes in metallurgical wastes/contaminated soils: A novel tool to trace metal source and behavior // J. Hazard. Mater. 2018. V. 343. P. 78–85. https://doi.org/10.1016/j.jhazmat.2017.09.020
- Wang Y., Zhou Y., Wei X., Chen Y., Beiyuan J., She J., Wang L., Liu J., Liu Y., Wang J. Effects of thallium exposure on intestinal microbial community and organ functions in zebrafish (Danio rerio) // Elementa: Science of the Anthropocene. 2021. V. 9. P. 00092. https://doi.org10.1525/elementa.2021.00092
- Wierzbicka M., Szarek-Łukaszewska G., Grodzinska K. Highly toxic thallium in plants from the vicinity of Olkusz (Poland) // Ecotoxicol. Environ. Saf. 2004. V. 59. P. 84–88. https://doi.org/10.1016/j.ecoenv.2003.12.009
- World Reference Base for Soil Reso creating legends for soil maps. 4th edition published in 2022 by the International Union of Soil Sciences (IUSS), Vienna, Austria. 2022, 234 p.
- Xiao E., Ning Z., Sun W., Jiang S., Fan W., Ma L., Xiao T. Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks // Environ. Pollut. 2020. V. 268. P. 115834. https://doi.org/10.1016/j.envpol.2020.115834
- Xiao T., Guha J., Boyle D., Liu C. Q., Chen J. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China // Sci. Total Environ. 2004. V. 318 (1–3). P. 223–244. https://doi.org/10.1016/S0048-9697(03)00448-0
- Xu H., Luo Y., Wang P., Zhu J., Yang Z., Liu Z. Removal of thallium in water/wastewater: A review // Water Res. 2019. V. 165. P. 114981. https://doi.org/10.1016/j.watres.2019.114981
- Yang C., Chen Y., Li C., Chang X., Xie C. Distribution of natural and anthropogenic thallium in the soils in an industrial pyrite slag disposing area // Sci. Total Environ. 2005. V. 341. P. 159–172. https://doi.org/10.1016/j.scitotenv.2004.09.024
Supplementary files
