Microplastics in the Soils of the Thala Hills, East Antarctica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, on an example of the Vecherny Oasis, Thala Hills, Enderby Land, data on the content of microplastic particles (less than 5 mm) in the soils of East Antarctica were obtained. Seven samples taken from a depth of 0–15 cm were analyzed. Two soil fractions (less than 1 mm and 1–5 mm) were studied in 3 replicates (42 individual samples). The technique for isolating microplastic particles included soil sieving, density separation in zinc chloride solution, centrifugation, vacuum filtration, and microscopic analysis. For filtration, glass fiber filters with a pore diameter of 1.6 μm were used. Quantification of microplastic particles was carried out using a microscope, digital camera and advisory software. It was found that microplastic particles present in all analyzed samples. Their number varies from 66 to 1933 units/kg of dry soil. In most cases, particles less than 1 mm predominate, accounting from 70 to 100%. In 70% of cases, fibers dominate, in 30% – fragments of irregularly shaped plastics; films occur singly. There is no clearly defined confinement of increased amount of microplastic particles to infrastructure facilities; this may be a consequence of the influence of other factors, including local and long-range transport.

About the authors

T. I. Kukharchyk

Institute for Nature Management of the National Academy of Sciences of Belarus

Author for correspondence.
Email: tkukharchyk@gmail.com
ORCID iD: 0000-0003-3434-1244
Belarus, Minsk

S. V. Kakareka

Institute for Nature Management of the National Academy of Sciences of Belarus

Email: tkukharchyk@gmail.com
Belarus, Minsk

K. O. Rabychyn

Institute for Nature Management of the National Academy of Sciences of Belarus

Email: tkukharchyk@gmail.com
Belarus, Minsk

References

  1. Абакумов Е.В. Гранулометрический состав почв Западной Антарктики // Почвоведение. 2010. № 3. C. 324–332. https://doi.org/10.1134/S1064229310030075
  2. Абакумов Е.В., Парникоза И.Ю., Лупачев А.В., Лодыгин Е.Д., Габов Д.Н., Кунах В.А. Содержание полициклических ароматических углеводородов в почвах окрестностей антарктических станций // Гигиена и санитария. 2015. Т. 94. № 7. С. 20–25.
  3. Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. С. 5–19. https://doi.org/10.1134/S0032180X19010040
  4. Кухарчик Т.И., Какарека С.В., Гигиняк Ю.Г. Почвы полуострова Брокнес, Восточная Антарктида // Почвоведение. 2022. № 12. C. 1473–1488. https://doi.org/10.31857/S0032180X22100513
  5. Кухарчик Т.И., Чернюк В.Д. Загрязнение почв микропластиком при производстве пенополистирола // Почвоведение. 2022. № 3. С. 370–380. https://doi.org/10.31857/S0032180X2203008X
  6. Мергелов Н.С. Почвы влажных долин в оазисах Ларсеманн и Вестфолль (Земля Принцессы Елизаветы, Восточная Антарктида) // Почвоведение. 2014. № 9. С. 1027–1045. https://doi.org/10.7868/S0032180X14090093
  7. Терехова В.А. Биотестирование экотоксичности почв при химическом загрязнении: современные подходы к интеграции для оценки экологического состояния (обзор) // Почвоведение. 2022. № 5. С. 586-599. https://doi.org/10.31857/S0032180X22050094
  8. Alekseev I., Abakumov E. Content of trace elements in soils of Eastern Antarctica: variability across landscapes//Arch Environ Contam Toxicol. 2021. V. 80. P. 368–388. https://doi.org/10.1007/s00244-021-00808-4
  9. Allen S., Allen D., Baladima F., Phoenix V.R., Thomas J.L., Le Roux G., Sonke J.E. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory // Nat Commun. 2021. V. 12(1). P. 7242. https://doi.org/10.1038/s41467-021-27454-7.
  10. Amaro E., Padeiro A., Mão de Ferro A., Mota A.M., Leppe M., Verkulich S., Hughes K.A., Peter H-U., Canário J. Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic // Marine Poll. Bull. 2015. V. 97. P. 523–527. https://doi.org/10.1016/j.marpolbul.2015.05.018.
  11. Aves A.R., Revell L.E., Gaw S., Ruffell H., Schuddeboom A., Wotherspoon N.E., LaRue M., McDonald A.J. First evidence of microplastics in Antarctic snow // The Cryosphere. 2022. V. 16. P. 2127–2145. https://doi.org/10.5194/tc-16-2127-2022
  12. Bergami E., Rota E., Caruso T., Birarda G., Vaccari L., Corsi I. Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus // Biol. Lett. 2020. V. 16. P. 20200093. http://dx.doi.org/10.1098/rsbl.2020.0093
  13. Bessa F., Ratcliffe N., Otero V., Sobral P., Marques J.C., Waluda C.M., Trathan P.N., Xavier J.C. Microplastics in gentoo penguins from the Antarctic region // Sci Rep. 2019. V. 9. P. 14191. https://doi.org/10.1038/s41598-019-50621-2
  14. Brahney J., Mahowald N., Prank M., Cornwell G., Klimont Z., Matsui H., Prather K.A. Constraining the atmospheric limb of the plastic cycle // P. Natl. Acad. Sci. USA. 2021. V. 118. P. e2020719118. https://doi.org/10.1073/pnas.2020719118.
  15. Caruso G., Bergami E., Singh N., Corsi I. Plastic occurrence, sources, and impacts in Antarctic environment and biota // Water Biol. Security. 2022. V. 1. P. 100034. https://doi.org/10.1016/j.watbs.2022.100034.
  16. Chen G., Feng Q., Wang J. Mini-review of microplastics in the atmosphere and their risks to humans // Sci. Total Environ. 2020. V. 703. P. 135504. https://doi.org/10.1016/j.scitotenv.2019.135504.
  17. Chen Y., Leng Y., Liu X., Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China // Environ Pollut. 2020. V. 257. https://doi.org/10.1016/j.envpol.2019.113449
  18. Cohen N., Radian A. Microplastic Textile fibers accumulate in sand and are potential sources of micro(nano)plastic pollution // Environ Sci Technol. 2022. V. 56. P. 17635–17642. https://doi.org/10.1021/acs.est.2c05026.
  19. Corradini F., Meza P., Eguiluz R., Casado F., Huerta-Lwanga E., Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal // Sci. Total Environ. 2019. V. 671. P. 411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368
  20. Cunningham E.M., Ehlers S.M., Dick J.T., Sigwar J.D., Linse K., Dick J.J., Kiriakoulakis K. High abundances of microplastic pollution in deep-sea sediments: evidence from Antarctica and the southern ocean // Environ. Sci. Technol. 2020. V. 54(21). P. 13661–13671. https://doi.org/10.1021/acs.est.0c03441
  21. Cunningham E.M., Seijo N.R., Altieri K.E., Audh R.R., Burger J.M., Bornman T.G., Fawcett S., Gwinnett C.M.B., Osborne A.O., Woodall L.C. The transport and fate of microplastic fibres in the Antarctic: The role of multiple global processes // Front. Mar. Sci. 2022. V. 9. P.1056081. https://doi.org/10.3389/fmars.2022.1056081
  22. Eriksson C., Burton H. Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island // Ambio. 2003. V. 32(6). P. 380-4. https://doi.org/10.1579/0044-7447-32.6.380.
  23. Fan W., Qiu C., Qu Q., Hu X., Mu L., Gao Z., Tang X. Sources and identification of microplastics in soils // Soil & Environmental Health. 2023. V. 1(2). P. 100019. https://doi.org/10.1016/j.seh.2023.100019.
  24. Franeker J.A., Bell P.J. Plastic ingestion by petrels breeding in Antarctica // Mar. Pollut. Bull. 1988. V. 19. P.672–674.
  25. González-Pleiter M., Edo C., Velázquez D., Casero-Chamorro M.C., Leganés F., Quesada A., Fernández-Piñas F., Rosal R. First detection of microplastics in the freshwater of an Antarctic Specially Protected Area // Mar. Pollut. Bull. 2020. V. 161. https://doi.org/10.1016/j.marpolbul.2020.111811
  26. González-Pleiter M., Lacero, G., Edo C., Lozoya J.P., Leganés F., Fernández-Piñas F., Rosal R., Teixeira-de-Mello F. A Pilot Study about microplastics and mesopelagic in an Antarctic Glacier // Cryosphere. 2021. V. 15. P. 2531–2539. https://doi.org/10.5194/tc-15-2531-2021
  27. Grause G., Kuniyasu Y., Chien M.F., Inoue C. Separation of microplastic from soil by centrifugation and its application to agricultural soil // Chemosphere. 2022. V. 288(Pt 3). P. 132654. https://doi.org/10.1016/j.chemosphere.2021.132654.
  28. He D., Luo Y., Lu S., Liu M., Song Y., Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks // Trends in Analytical Chemistry. 2018. V. 109. Р. 163–172. https://doi.org/10.1016/j.trac.2018.10.006
  29. Imhof H.K., Laforsch C., Wiesheu A.C., Schmid J., Anger P.M., Niessner R., Ivleva N.P. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes // Water Res. 2016. V. 98. P. 64–74. https://doi.org/10.1016/j.watres.2016.03.015
  30. Ivar do Sul J.A., Barnes D., Costa M. F., Convey P., Costa E., Campos L. Plastics in the Antarctic environment: Are we looking only at the tip of the iceberg? // Oecologia Australis. 2011. V. 15(1). P. 150–170. https://doi.org/10.4257/oeco.2011.1501.11
  31. Kelly A., Lannuzel D., Rodemann T., Meiners K.M., Auman H.J. Microplastic contamination in east Antarctic sea ice // Mar. Pollut. Bull. 2020. V. 154. P. 11130. https://doi.org/10.1016/j.marpolbul.2020.111130.
  32. Kennicutt II M.C., Klein A., Montagna P., Sweet S., Wade T., Palmer T., Sericano J., Denoux G. Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica // Environ. Res. Lett. 2010. V. 5. 10 pp.
  33. Kukharchyk T., Kakareka S., Giginyak Y. Trace elements in soils of oases of Enderby Land (on an example of Vecherny oasis) //Czech Polar Reports. 2018. V. 8(2). P. 162–177. https://doi.org/10.5817/CPR2018-2-13
  34. Lacerda A.L.d.F., Rodrigues L.d.S., van Sebille E., Rodrigues F.L., Ribeiro L., Secchi E.R., Kessler F. , Proietti M.C. Plastics in sea surface waters around the Antarctic Peninsula // Sci Rep. 2019. V.9. P. 3977. https://doi.org/10.1038/s41598-019-40311-4
  35. Li Q., Wu J., Zhao X., Gu X., Ji R. Separation and identification of microplastics from soil and sewage sludge // Environ. Pollut. 2019. V. 254. P. 113076. https://doi.org/10.1016/j.envpol.2019.113076
  36. Lin J., Rayhan A. S., Wang Y., Wu Z., Lin Y., Ke H., Li T., Chen K., Cai M. Distribution and contamination assessment of heavy metals in soils and sediments from the Fildes Peninsula and Ardley Island in King George Island, Antarctica // Polar Research. 2021. V. 40. P. 1–11. https://doi.org/10.33265/polar.v40.5270
  37. Liu K., Wu T., Wang X., Song Z., Zong C., Wei N., Li D. Consistent transport of terrestrial microplastics to the ocean through atmosphere // Environ. Sci. Tech. 2019. V. 53(18). P. 10612–10619. https://doi.org/10.1021/acs.est.9b03427
  38. Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., He D. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China // Environ Pollut. 2018. V. 242(Pt A). P. 855–862. https://doi.org/10.1016/j.envpol.2018.07.051.
  39. Munari C., Infantini V., Scoponi M., Rastelli E., Corinaldesi C., Mistri M. Microplastics in the sediments of Terra Nova Bay (Rossa Sea, Antarctica) // Mar. Pollut. Bull. 2017. V. 122. P. 161–165. https://doi.org/10.1016/j.marpolbul.2017.06.039
  40. Perfetti-Bolaño A., Araneda A., Muñoz K., Barra R.O. Occurrence and distribution of microplastics in soils and intertidal sediments at Fildes Bay, Maritime Antarctica // Front. Mar. Sci. 2022. V. 8. P. 774055. https://doi.org/10.3389/fmars.2021.774055
  41. Ranjan V.P., Joseph A., Sharma H.B., Goel S. Preliminary investigation on effects of size, polymer type, and surface behaviour on the vertical mobility of microplastics in a porous media // Sci. Total Environ. 2023. V. 864. P. 161148. https://doi.org/10.1016/j.scitotenv.2022.161148.
  42. Reed S., Clark M., Thompson R., Hughes K.A. Microplastics in marine sediments near Rothera Research Station, Antarctica // Mar. Pollut. Bull. 2018. V. 133. P. 460–463. https://doi.org/10.1016/j.marpolbul.2018.05.068.
  43. Rillig M.C. Microplastic in terrestrial ecosystems and the soil? // Environ. Sci. Technol. 2012. V. 46. P. 6453–6454. https://doi.org/10.1021/es302011r
  44. Rota E., Bergami E., Corsi I., Bargagli R. Macro- and microplastics in the Antarctic environment: ongoing assessment and perspectives // Environments. 2022. V. 9(93). https://doi.org/10.3390/environments9070093
  45. Thomas D., Schütze B., Heinze W.M., Steinmetz Z. Sample preparation techniques for the analysis of microplastics in soil – A review // Sustainability. 2020. V. 12. P. 9074. https://doi.org/10.3390/su12219074
  46. Waldschläger K., Schüttrumpf H. Infiltration behavior of microplastic particles with different densities, sizes, and shapes—from glass spheres to natural sediments // Environ. Sci. Technol. 2020. V. 54. P. 9366–9373. https://doi.org/10.1021/acs.est.0c01722
  47. Waller C.L., Griffiths H.J., Waluda C.M., Thorpe S.E., Loaiza I., Moreno B., Pacherres C.O., Hughes K.A. Microplastics in the Antarctic marine system: an emerging area of research // Sci. Total Environ. 2017. V. 598. P. 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283
  48. Wang J., Li J., Liu S., Li H., Chen X., Peng C., Zhang P., Liu X. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands // Environ. Poll. 2021.V. 269. P. 116199. https://doi.org/10.1016/j.envpol.2020.116199
  49. Xia L. Research progress on separation and detection methods of microplastics in soil environment // Academic Journal of Science and Technology. 2022. V.3. P. 144–147. https://doi.org/10.54097/ajst.v3i3.2918
  50. Xiao S., Cui Y., Brahney Ja., Mahowald N.M., Li Q. Long-distance atmospheric transport of microplastic fibres depends on their shapes // Springer Nature. 2021. LATEX template. https://doi.org/10.21203/rs.3.rs-2416912/v1
  51. Zhang M., Haward M., McGee J. Marine plastic pollution in the polar south: Responses from Antarctic Treaty System // Polar Record. 2020. V. 56(e36). P. 1–9. https://doi.org/10.1017/S0032247420000388
  52. Zhang S., Yang X., Gertsen H., Peters P., Salánki T., Geissen V. A simple method for the extraction and identification of light density microplastics from soil // Sci. Total Environ. 2018. V. 616-617. P. 1056–1065. https://doi.org/10.1016/j.scitotenv

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of soil sampling points in the Evening Oasis, Enderby Land.

Download (1MB)
3. Fig. 2. General view of typical soil sampling sites: a - sample 3 on fluvioglacial sediments (photo by Y.G. Giginyak), b - sample 75 on moraine sediments (photo by P.V. Shablyko).

Download (336KB)
4. Fig. 3. Examples of different soil fractions under a microscope with 10x magnification (based on sample 1): a - <0.5 mm; b - 0.5-1 mm; c - 1-2 mm; d - 2-5 mm.

Download (219KB)
5. Fig. 4. General view of filters after filtration of soil samples from saline solution and centrifugation, fractions: a - <1 mm, b - 1-5 mm (sample 3); c - < 1 mm, d - 1-5 mm (sample 13).

Download (238KB)
6. Fig. 5 Variety of detected microplastic particles on the filter after filtration of sample 3 (fraction <1 mm).

Download (1MB)
7. Fig. 6. Ratio of microplastic particles in soil samples of Vecherniy oasis in fractions of size: 1 - 1-5 mm, 2 - <1 mm.

Download (108KB)

Copyright (c) 2024 Russian Academy of Sciences