Kinetic Assessment of the Biodegradability of Gel-Forming Soil Conditioners in Incubation Experiments with Instrumental Monitoring of Carbon Dioxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A quantitative study of the biodegradability of polymer soil conditioners is necessary for a reasonable prediction of their stability and functioning in soils. For this purpose, we proposed a new methodological approach based on PASCO (USA) equipment, which allows recording continuous kinetic curves of CO2 emission in laboratory experiments on incubation of composite gel-forming soil conditioners. Several characteristic types of respiratory curves have been identified and new physically based models have been proposed for their description with subsequent calculation of the half-lives of composite hydrogels. For the traditionally considered non-biodegradable acrylic superabsorbents of soil water, the possibility of rapid biodegradation was shown for the first time in the case of the introduction of a biologically active compost extract into their liquid phase. With this treatment, which brings laboratory experiments closer to real soil conditions, the half-lives of both the well-known Western superabsorbents Aquasorb and Zeba and the Russian hydrogels Aquapastus decreased by an order of magnitude from the initial values of 2–6 years to 0.1–0.3 years. In practice, this can negatively affect the profitability of using such materials for soil conditioning due to their rapid destruction and loss of functionality. The introduction of silver ions into innovative Aquapastus composite superabsorbents at a dose of 0.1% or 10 ppm in swollen gel structures effectively reduces their biodegradability, prolonging the half-life to 10 years or more, which is twice the German standard DüMV 05.12.12 for the stability of polymer meliorants.

About the authors

A. V. Smagin

Lomonosov Moscow State University

Author for correspondence.
Email: smagin@list.ru
Russia, 119991, Moscow

N. B. Sadovnikova

Lomonosov Moscow State University; Institute of Forest Science, Russian Academy of Sciences

Email: smagin@list.ru
Russia, 119991, Moscow; Russia, 143030, Uspenskoe

E. A. Belyaeva

Institute of Forest Science, Russian Academy of Sciences

Email: smagin@list.ru
Russia, 143030, Uspenskoe

K. V. Korchagina

Institute of Forest Science, Russian Academy of Sciences

Email: smagin@list.ru
Russia, 143030, Uspenskoe

A. A. Kokoreva

Lomonosov Moscow State University; Institute of Forest Science, Russian Academy of Sciences

Email: smagin@list.ru
Russia, 119991, Moscow; Russia, 143030, Uspenskoe

V. N. Krivtsova

Lomonosov Moscow State University; Institute of Forest Science, Russian Academy of Sciences

Email: smagin@list.ru
Russia, 119991, Moscow; Russia, 143030, Uspenskoe

References

  1. Долгоносов Б.М. Нелинейная динамика экологических и гидрологических процессов. М.: Книжный дом “ЛИБРОКОМ”, 2009. 440 с.
  2. Методы почвенной микробиологии и биохимии. М.: Изд-во Моск. ун-та, 1991. 294 с.
  3. Abdelmagid H.M., Tabatabai M.A. Decomposition of Acrylamide in Soils // J. Environ Qual. 1982. V. 11. P. 701–704.
  4. Adjuik T.A., Nokes S.E., Montross M.D. Biodegradability of bio-based and synthetic hydrogels as sustainable soil amendments: A review // J. Appl. Polym. Sci. 2023. P. e53655. https://doi.org/10.1002/app.53655
  5. Al-Darby A.M. The hydraulic properties of a sandy soil treated with gel-forming soil conditioner // Soil Technol. 1996. V. 9. P. 15–28.
  6. Al-Darby A.M., Al-Asfoor S.I., El-Shafei Y.Z. Effect of soil gel-conditioner on the hydrophysical properties of sandy soil // J. Saudi Soc. Agric. Sci. 2002. V. 1. P. 14–40.
  7. Baldera-Moreno Y., Pino V., Farres A., Banerjee A., Gordillo F., Andler R. Biotechnological aspects and mathematical modeling of the biodegradation of plastics under controlled conditions // Polymers. 2022. V. 14. P. 375. https://doi.org/10.3390/polym14030375
  8. Banedjschafie S., Durner W. Water retention properties of a sandy soil with superabsorbent polymers as affected by aging and water quality // J. Plant Nutr. Soil Sci. 2015. V. 178. P. 798–806.
  9. Behera S., Mahanwar P.A. Superabsorbent polymers in agriculture and other applications: a review // Polym. Plast.Technol. Mat. 2020. V. 59. P. 341–356. https://doi.org/10.1080/25740881.2019.1647239
  10. Campos E.V.R., de Oliveira J.L., Fraceto L.F. applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review // Adv. Sci. Eng. Med. 2014. V. 6. P. 373–387. https://doi.org/10.1166/asem.2014.1538
  11. Campos E.V.R., de Oliveira J.L., Fraceto L.F., Singh B. Polysaccharides as safer release systems for agrochemicals // Agron. Sustain. Dev. 2015. V. 35. P. 47–66.
  12. Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities // Trends Biotechnol. 2015. V. 33. P. 637–651. https://doi.org/10.1016/j.tibtech.2015.09.002
  13. Croll B.T., Arkell G.M., Hodge R.P.J. Residues of acrylamide in water // Water Research. 1974. V. 8. № 11. P. 989–93.
  14. De Lucca J., Boue S., Sien T., Cleveland T.E., Walsh T.J. Silver Enhances the in Vitro Antifungal Activity of the Saponin, CAY-1 // Mycoses. 2011. V. 54. P. e1–e8.
  15. El-Rehim H.A.A., Hegazy E.S.A., El-Mohdy H.L.A. Radiation Synthesis of Hydrogels to Enhance Sandy Soils Water Retention and Increase Plant Performance // J. Appl. Polym. Sci. 2004. V. 93. P. 1360–1371.
  16. Fontaine S., Mariotti A., Abbadie L. The priming effect of organic matter: A question of microbial competition? // Soil Biol. Biochem. 2003. V. 35. P. 837–843.
  17. Hennecke D., Bauer A., Herrchen M., Wischerhoff E., Gores F. Cationic polyacrylamide copolymers (PAMs): environmental half life determination in sludgetreated soil // Environ. Sci. Eur. 2018. V. 30. P. 16. https://doi.org/10.1186/s12302-018-0143-3
  18. Hiroki A., Hong P.T.T., Nagasawa N., Tamada M. Biodegradability of blend hydrogels based on carboxymethyl cellullose and carboxymethyl stach // Trans. Mater. Res. Soc. 2011. V. 36. P. 397–400
  19. Kingsland S. The RefractoryModel: the logistic curve and the history of population ecology // Q. Rev. Biol. 1982. V. 57. P. 29–52.
  20. Kim S.W., Jung J.H., Lamsal K., Kim Y.S., Min J.S., Lee Y.S. Antifungal effect of silver nanoparticles (AgNPs) against various plant pathogenic fungi // Mycobiology. 2012. V. 40. P. 53–58.
  21. Lande S.S., Bosch S.J., Howard P.H. Degradation and Leaching of Acrylamide in soil // J. Environ. Qual. 1979. V. 8. P. 133–137.
  22. Langdon K.A., McLaughlin M.J., Kirby J.K., Merrington G. Influence of soil properties and soil leaching on the toxicity of ionic silver to plants // Env. Toxicol. Chem. 2015. V. 34. P. 2503–2512. https://doi.org/10.1002/etc.3067
  23. Larson R.L. Estimation of biodegradation potential of xenobiotic organic chemicals // Appl. Environ. Microbiol. 1979. V. 38. № 6. P. 1153–1161.
  24. Lentz R.D., Andrawes F.F., Barvenik F.W., Koehn A.C. Acrylamide Monomer leaching from polyacrylamide-treated irrigation furrows // J. Environ. Qual. 2008. V. 37. P. 2293–2298. https://doi.org/10.2134/jeq2007.0574
  25. Nyyssola A., Ahlgren J. Microbial degradation of polyacrylamide and the deamination product polyacrylate // Int. Biodeterioration Biodegradation. 2019. V. 139. P. 24–33. https://doi.org/10.1016/j.ibiod.2019.02.005
  26. Novoskoltseva O.A., Panova I.G., Loiko N.G., Nikolaev Y.A., Litmanovich E.A., Yaroslavov A.A. Polyelectrolytes and Polycomplexes for Stabilizing Sandy Grounds // Polym. Sci. Ser. B. 2021. V. 63. P. 488–495. https://doi.org/10.1134/S1560090421050092
  27. Oksinska M.P., Magnucka E.G., Lejcus K., Pietr S.J. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria // Environ. Sci. Pollut. Res. Int. 2016. V. 23. № 6. P. 5969. https://doi.org/10.1007/s11356-016-6130-6
  28. Ostrand M.S., DeSutter T.M., Daigh A.L.M., Limb R.F., Steele D.D. Superabsorbent polymer characteristics, properties, and applications. // Agrosyst Geosci Environ. 2020. V. 3. P. e20074. https://doi.org/10.1002/agg2.20074
  29. Patel P.N., Parmar Kh.G., Nakum A.N., Patel M.N., Patel P.R., Patel V.R., Sen D.J. Biodegradable polymers: an ecofriendly approach in newer millenium // Asian J. Biomed. Pharm. Sci. 2011. V. 1. № 3. P. 23–39.
  30. Puoci F., Iemma F., Spizzirri U.G., Cirillo G., Curcio M., Picci N. Polymer in agriculture: a review // Am. J. Agri. Biol. Sci. 2008. V. 3. P. 299–314. https://doi.org/10.3844/ajabssp.2008.299.314
  31. Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. Silver Nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria // J. Appl. Microbiol. 2012. V. 112. P. 841–852. https://doi.org/10.1111/j.13652672.2012.05253.x
  32. Rosenkranz F., Chamy R. (ed.) Biodegradation – life of science. pontificial catholic university of valparaiso publ // Chile. 2013. https://doi.org/10.5772/56222
  33. Sannino A., Demitri Ch., Madaghiele M. Biodegradable cellulose-based hydrogels: design and applications // Materials. 2009. V. 2. P. 353–373. https://doi.org/10.3390/ma2020353
  34. Shahid S.A., Qidwai A.A., Anwar F., Ullah I., Rashid U. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material // Molecules 2012. V. 17. P. 9397–9412. https://doi.org/10.3390/molecules17089397
  35. Shanker R., Ramakrishna C., Seth P.K. Microbial degradation of acrylamide monomer // Arch. Microb. 1990. V. 154. P. 192–198.
  36. Schlich K., Klawonn Th., Terytze K., Hund-Rinke K. Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test // Env. Toxicol. Chem. 2013. V. 32. P. 181–187. https://doi.org/10.1002/etc.2030
  37. Smagin A.V., Sadovnikova N.B., Smagina M.V. Biodestruction of strongly swelling polymer hydrogels and its effect on the water retention capacity of soils // Eurasian Soil Sci. 2014. V. 47. № 6. P. 591–597. https://doi.org/10.1134/S1064229314060088
  38. Smagin A.V., Sadovnikova N.B., Vasenev V.I., Smagina M.V. Biodegradation of some organic materials in soils and soil constructions: experiments, modeling and prevention // Materials. 2018. V. 11. P. 1889. https://doi.org/10.3390/ma11101889
  39. Smagin A., Sadovnikova N., Smagina M. Synthetic Gel structures in soils for sustainable potato farming // Scientific Reports. 2019. V. 9. P. 18588. https://doi.org/10.1038/s41598-019-55205-8
  40. Smagin A.V., Budnikov V.I., Sadovnikova N.B., Kirichenko A.V., Belyaeva E.A., Krivtsova V.N. Gel-forming soil conditioners of combined action: laboratory tests for functionality and stability // Polymers. 2022. V. 14. P. 4665. https://doi.org/10.3390/polym14214665
  41. Smagin A.V., Sadovnikova N.B., Belyaeva E.A., Krivtsova V.N., Shoba S.A., Smagina M.V. Gel-forming soil conditioners of combined action: field trials in agriculture and urban landscaping // Polymers. 2022. V. 14. P.5131. https://doi.org/10.3390/polym14235131
  42. Smagin A.V., Sadovnikova N.B., Belyaeva E.A. Hygroscopicity of gel-forming composite materials: thermodynamic assessment and technological significance // J. Compos. Sci. 2022. V. 6. P. 269. https://doi.org/10.3390/jcs6090269
  43. Smagin A.V., Sadovnikova N.B., Budnikov V.I. Biodegradation of aqueous superabsorbents: kinetic assessment using biological oxygen demand analysis // J. Compos. Sci. 2022. V. 7. P. 164. https://doi.org/10.3390/jcs7040164
  44. Sojka R.E., Entry J.A. Influence of polyacrylamide application to soil on movement of microorganisms in runoff water // Environ. Pollut. 2000. V. 108. P. 405–412.
  45. Turioni C., Guerrini G., Squartini A., Morari F., Maggini M., Gross S. Biodegradable Hydrogels: Evaluation of degradation as a function of synthesis parameters and environmental conditions // Soil Syst. 2021. V. 5. P. 47. https://doi.org/10.3390/soilsystems5030047
  46. Venkatachalam D., Kaliappa S. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications // Rev. Chem. Eng. 2021. V. 39. P. 1–45. https://doi.org/10.1515/revce-2020-0102
  47. Wilske B., Bai M., Lindenstruth B., Bach M., Rezaie Z., FredeH.-G., Breuer L. Biodegradability of a polyacrylate superabsorbent in agricultural soil // Environ. Sci. Pollut. Res. 2014. V. 21. №16. P. 9453–9460. https://doi.org/10.1007/s11356-013-2103-1
  48. Wu L., Liu M., Rui-Liang R.L. Preparation and Properties of a Double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention // Biores. Technol. 2008. V. 99. P. 547–554. https://doi.org/10.1016/j.biortech.2006.12.027
  49. Xiong B., Loss R.D., Shields D., Pawlik T., Hochreiter R., Zydney A.L., Kumar M. Polyacrylamide degradation and its implications in environmental systems. Clean Water. 2018. V. 1. P. 1–9. https://doi.org/10.1038/s41545-018-0016-8
  50. Xue Y., Xiao H., Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts // Int. J. Mol. Sci. 2015. V. 16. P. 3626–3655. https://doi.org/10.3390/ijms16023626
  51. Yang L., Yang Y., Chen Z. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering // Ecol. Eng. 2014. V. 62. P. 27–32. https://doi.org/10.1016/j.ecoleng.2013.10.019
  52. Zhao L., Bao M., Yan M., Lu. J. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions // Bioresour. Technol. 2016. V. 216. P. 95–104. https://doi.org/10.1016/j.biortech.2016.05.054
  53. Zohuriaan-Mehr M.J., Kabiri K. Superabsorbent polymer materials: A review // Iran. Polym. J. 2008. V. 17. P. 451–477.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (55KB)
3.

Download (61KB)
4.

Download (171KB)
5.

Download (160KB)

Copyright (c) 2023 А.В. Смагин, Н.Б. Садовникова, Е.А. Беляева, К.В. Корчагина, А.А. Кокорева, В.Н. Кривцова