Vis-NIR Spectroscopy for Soil Organic Carbon Assessment: Meta-Analysis
- Authors: Chinilin A.V.1, Vindeker G.V.1, Savin I.Y.1,2
-
Affiliations:
- Dokuchaev Soil Science Institute
- Ecological Faculty, Peoples’ Friendship University of Russia (RUDN University)
- Issue: No 11 (2023)
- Pages: 1357-1370
- Section: SOIL CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/666726
- DOI: https://doi.org/10.31857/S0032180X23600695
- EDN: https://elibrary.ru/TOPMFN
- ID: 666726
Cite item
Abstract
In this study, a systematic review and meta-analysis of scientific researches devoted to the assessment of the soil organic carbon content using Vis-NIR spectroscopy approaches was carried out. The meta-analysis included 134 studies published between 1986 and 2022 with a total sample of 709 values of quantitative metrics. The articles were searched in databases of scientific periodicals: RSCI, Science Direct, Scopus, Google Scholar by the key words: “Vis-NIR spectroscopy AND soil organic carbon”. In the process of meta-analysis, using the nonparametric one-sided Kraskel-Wallis variance analysis in conjunction with the nonparametric pairwise method, the presence of a statistically significant difference between the median values of the accepted quantitative metrics of the predictive power of the models (coefficient of determination (R2cv/val), root mean square error (RMSE) and the ratio of performance to deviation (RPD) comparisons. As a result, the best efficiency (from the point of view of comparing these metrics) was revealed for the method of preprocessing spectral curves, for various multidimensional data analysis approaches used, and the results of assessing the organic carbon content of soils were compared between spectroscopy in the laboratory and directly in the field.
Keywords
About the authors
A. V. Chinilin
Dokuchaev Soil Science Institute
Author for correspondence.
Email: chinilin_av@esoil.ru
Russia, 119017, Moscow
G. V. Vindeker
Dokuchaev Soil Science Institute
Email: chinilin_av@esoil.ru
Russia, 119017, Moscow
I. Yu. Savin
Dokuchaev Soil Science Institute; Ecological Faculty, Peoples’ Friendship University of Russia (RUDN University)
Email: chinilin_av@esoil.ru
Russia, 119017, Moscow; Russia, 115093, Moscow
References
- Андроников В.Л. О спектральной отражательной способности некоторых почв лесостепи // Изв. АН СССР. Сер. геогр. 1958. № 3. С. 93–97.
- Караванова Е.И. Оптические свойства почв и их природа. М.: Изд-во МГУ, 2003. 151 с.
- Карманов И.И. Спектральная отражательная способность и цвет почв как показатель их свойств. М.: Колос, 1974. 351 с.
- Карманов И.И. Изучение почв по спектральному составу отраженных излучений // Почвоведение. 1970. № 4. С. 34–47.
- Кононова М.М. Органическое вещество почвы. Его природа, свойства и методы изучения. М.: Изд-во АН СССР, 1963. 314 с.
- Ливеровский Ю.А. Применение аэрометодов при изучении почвенного покрова // Аэрометоды изучения природных ресурсов. М.: Географгиз, 1962. С. 115–129.
- Михайлова Н.А., Орлов Д.С. Оптические свойства почв и почвенных компонентов. М.: Наука, 1986. 118 с.
- Орлов Д.С., Суханова Н.И., Розанова М.С. Спектральная отражательная способность почв и их компонентов. М.: Изд-во МГУ, 2001. 176 с.
- Родионова О.Е., Померанцев А.Л. Хемометрика: достижения и перспективы // Успехи химии. № 4. С. 302–321.
- Савин И.Ю., Виндекер Г.В. Некоторые особенности использования оптических свойств почв поверхности для определения их влажности // Почвоведение. 2021. № 7. С. 806–814. https://doi.org/10.31857/S0032180X21070121
- Толчельников Ю.С. Оптические свойства ландшафта (применительно к аэросъемке). Л.: Наука, 1974. 252 с.
- Barra I., Haefele S.M., Sakrabani R., Kebede F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances – A review // TrAC Trends Anal. Chem. 2021. V. 135. https://doi.org/10.1016/j.trac.2020.116166
- Behrens T., Viscarra Rossel R.A., Ramirez-Lopez L., Baumann P. Soil spectroscopy with the Gaussian pyramid scale space // Geoderma. 2022. V. 426. https://doi.org/10.1016/j.geoderma.2022.116095
- Ben Dor E., Ong C., Lau I.C. Reflectance measurements of soils in the laboratory: Standards and protocols // Geoderma. 2015. V. 245–246. P. 112–124. https://doi.org/10.1016/j.geoderma.2015.01.002
- Buddenbaum H., Steffens M. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy // Appl. Environ. Soil Sci. 2012. V. 2012. P. 1–12. https://doi.org/10.1155/2012/274903
- Castaldi F. Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands // Remote Sens. 2021. V. 13. https://doi.org/10.3390/rs13173345
- Castaldi F., Chabrillat S., Chartin C., Genot V., Jones A.R., van Wesemael B. Estimation of soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database // Eur. J. Soil Sci. 2018b. V. 69. P. 592–603. https://doi.org/10.1111/ejss.12553
- Castaldi F., Chabrillat S., Don A., van Wesemael B. Soil organic carbon mapping using LUCAS topsoil database and sentinel-2 data: an approach to reduce soil moisture and crop residue effects // Remote Sens. 2019. V. 11. https://doi.org/10.3390/rs11182121
- Castaldi F., Chabrillat S., Jones A., Vreys K., Bomans B., van Wesemael B. Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database // Remote Sens. 2018. V. 10. https://doi.org/10.3390/rs10020153
- Chakraborty S., Li B., Weindorf D.C., Morgan C.L.S. External parameter orthogonalisation of Eastern European VisNIR-DRS soil spectra // Geoderma. 2019. V. 337. P. 65–75. https://doi.org/10.1016/j.geoderma.2018.09.015
- Chinilin A.V., Savin I.Yu. Comparison of the effectiveness of various ways of preprocessing spectrometric data in order to predict the concentration of organic soil carbon // J. Opt. Technol. 2018. V. 85. P. 789–795. https://doi.org/10.1364/JOT.85.000789
- Coblinski J.A., Giasson É., Demattê J.A.M., Dotto A.C., Costa J.J.F., Vašát R. Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths // Catena. 2020. V. 89. https://doi.org/10.1016/j.catena.2020.104485
- Condit H.R. The spectral reflectance of American soils // Photogramm. Eng. 1970. V. 36. P. 955–966.
- Dotto A.C., Dalmolin R.S.D., ten Caten A., Grunwald S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra // Geoderma. 2018. V. 314. P. 262–274. https://doi.org/10.1016/j.geoderma.2017.11.006
- Gholizadeh A., Coblinski J.A., Saberioon M., Ben-Dor E., Drábek O., Demattê J.A.M., Borůvka L. vis–NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil // Sensors. 2021. V. 21. https://doi.org/10.3390/s21072386
- Gholizadeh A., Viscarra Rossel R.A., Saberioon M., Borůvka L., Kratina J., Pavlů L. National-scale spectroscopic assessment of soil organic carbon in forests of the Czech Republic // Geoderma. 2021b. V. 385. https://doi.org/10.1016/j.geoderma.2020.114832
- Gozukara G., Akça E., Dengiz O., Kapur S., Adak A. Soil particle size prediction using Vis-NIR and pXRF spectra in a semiarid agricultural ecosystem in Central Anatolia of Türkiye // Catena. 2022. V. 217. https://doi.org/10.1016/j.catena.2022.106514
- Gozukara G., Hartemink A.E., Zhang Y. Soil Catena characterization using pXRF and Vis-NIR spectroscopy in Northwest Turkey // Eurasian Soil Sci. 2021. V. 54. P. 1–15. https://doi.org/10.1134/S1064229322030061
- Hong Y., Chen Y., Chen S., Shen R., Guo L., Liu Y., Mounem Mouazen A. Improving spectral estimation of soil inorganic carbon in urban and suburban areas by coupling continuous wavelet transform with geographical stratification // Geoderma. 2023. V. 430. https://doi.org/10.1016/j.geoderma.2022.116284
- Igne B., Reeves J.B., McCarty G., Hively W.D., Lund E., Hurburgh C.R. Evaluation of spectral pretreatments, partial least squares, least squares support vector machines and locally weighted regression for quantitative spectroscopic analysis of soils // J. Near Infrared Spectrosc. 2010. V. 18. P. 167–176. https://doi.org/10.1255/jnirs.883
- Khayamim F., Wetterlind J., Khademi H., Robertson A.H.J., Cano A.F., Stenberg B. Using visible and near infrared spectroscopy to estimate carbonates and gypsum in soils in arid and subhumid regions of Isfahan, Iran // J. Near Infrared Spectrosc. 2015. V. 23. P. 155–165. https://doi.org/10.1255/jnirs.1157
- Knadel M., Castaldi F., Barbetti R., Ben-Dor E., Gholizadeh A., Lorenzetti R. Mathematical techniques to remove moisture effects from visible–near-infrared–shortwave-infrared soil spectra – review // Appl. Spectrosc. Rev. 2022. P. 1–34. https://doi.org/10.1080/05704928.2022.2128365
- Knox N.M.M., Grunwald S., McDowell M.L.L., Bruland G.L.L., Myers D.B.B., Harris W.G.G. Modelling soil carbon fractions with visible near-infrared (VNIR) and mid-infrared (MIR) spectroscopy // Geoderma. 2015. V. 239–240. P. 229–239. https://doi.org/10.1016/j.geoderma.2014.10.019
- Kuhn M., Johnson K. Applied Predictive Modeling. N.Y.: Springer. 2013. 600 p. https://doi.org/10.1007/978-1-4614-6849-3
- Li S., Viscarra Rossel R.A., Webster R. The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13202
- Liu Y., Pan X.-Z.X., Wang C., Li Y., Shi R. Predicting soil salinity with Vis–NIR spectra after removing the effects of soil moisture using external parameter orthogonalization // PLoS One. 2015. V. 10. https://doi.org/10.1371/journal.pone.0140688
- Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation // IEEE Trans. Pattern Anal. Mach. Intell. 1989. V. 11. P. 674–693. https://doi.org/10.1109/34.192463
- Martens H., Næs T. Multivariate calibration // Chemometrics. Netherlands, Dordrecht: Springer. 1984. P. 147–156. https://doi.org/10.1007/978-94-017-1026-8_5
- McBride M.B. Estimating soil chemical properties by diffuse reflectance spectroscopy: Promise versus reality // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13192
- Mendes W. de S., Demattê J.A.M., Bonfatti B.R., Resende M.E.B., Campos L.R., da Costa A.C.S. A novel framework to estimate soil mineralogy using soil spectroscopy // Appl. Geochem. 2021. V. 127. https://doi.org/10.1016/j.apgeochem.2021.104909
- Minasny B., McBratney A.B. Digital soil mapping: A brief history and some lessons // Geoderma. 2016. V. 264. P. 301–311. https://doi.org/10.1016/j.geoderma.2015.07.017
- Molnar C. Interpretable Machine Learning: A Guide For Making Black Box Models Explainable. 2022. https://christophm.github.io/interpretable-ml-book/
- Morellos A., Pantazi X.-E., Moshou D., Alexandridis T., Whetton R., Tziotzios G., Wiebensohn J. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy // Biosyst. Eng. 2016. V. 152. P. 104–116. https://doi.org/10.1016/j.biosystemseng.2016.04.018
- Moura-Bueno J.M., Dalmolin R.S.D., ten Caten A., Dotto A.C., Demattê J.A.M. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions // Geoderma. 2019. V. 337. P. 565–581. https://doi.org/10.1016/j.geoderma.2018.10.015
- Muñoz J.D., Kravchenko A. Soil carbon mapping using on-the-go near infrared spectroscopy, topography and aerial photographs // Geoderma. 2011. V. 166. P. 102–110. https://doi.org/10.1016/j.geoderma.2011.07.017
- Ng W., Malone B., Minasny B., Jeon S. Near and mid infrared soil spectroscopy // Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2022. https://doi.org/10.1016/B978-0-12-822974-3.00022-7
- Ng W., Minasny B., McBratney A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy // Sci. Total Environ. 2020. V. 702. https://doi.org/10.1016/j.scitotenv.2019.134723
- Patil I. Visualizations with statistical details: The “ggstatsplot” approach // J. Open Source Softw. 2021. V. 6. https://doi.org/10.21105/joss.03167
- Poppiel R.R., Paiva A.F. da S., Demattê J.A.M. Bridging the gap between soil spectroscopy and traditional laboratory: Insights for routine implementation // Geoderma. 2022. V. 425. https://doi.org/10.1016/j.geoderma.2022.116029
- Prudnikova E., Savin I.Yu. Some Peculiarities of Arable Soil Organic Matter Detection Using Optical Remote Sensing Data // Remote Sens. 2021. V. 13. https://doi.org/10.3390/rs13122313
- Ramos P.V., Inda A.V., Barrón V., Siqueira D.S., Marques Júnior J., Teixeira D.D.B. Color in subtropical brazilian soils as determined with a Munsell chart and by diffuse reflectance spectroscopy // Catena. 2020. V. 193. https://doi.org/10.1016/j.catena.2020.104609
- Rehman H.U., Knadel M., Jonge L.W., Moldrup P., Greve M.H., Arthur E. Comparison of cation exchange capacity estimated from Vis–NIR spectral reflectance data and a pedotransfer function // Vadose Zo. J. 2019. V. 18. P. 1–8. https://doi.org/10.2136/vzj2018.10.0192
- Roudier P., Hedley C.B., Lobsey C.R., Viscarra Rossel R.A., Leroux C. Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon // Geoderma. 2017. V. 296. P. 98–107. https://doi.org/10.1016/j.geoderma.2017.02.014
- dos Santos U.J., Demattê J.A.M., Menezes R.S.C., Dotto A.C., Guimarães C.C.B., Alves B.J.R., Primo D.C. Predicting carbon and nitrogen by visible near-infrared (Vis-NIR) and mid-infrared (MIR) spectroscopy in soils of Northeast Brazil // Geoderma Reg. 2020. V. 23. https://doi.org/10.1016/j.geodrs.2020.e00333
- Savin I.Y., Shishkin M.A., Sharychev D.V. Peculiarities of spectral reflectance of fractions with sizes from 20 to 5,000 microns in soil samples // Dokuchaev Soil Bull. 2022. V. 112. P. 24–47. https://doi.org/10.19047/0136-1694-2022-112-24-47
- Savitzky A., Golay M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures // Anal. Chem. 1964. V. 36. P. 1627–1639. https://doi.org/10.1021/ac60214a047
- Slaughter D.C., Pelletier M.G., Upadhyaya S.K. Sensing soil moisture using NIR spectroscopy // Appl. Eng. Agric. 2001. V. 17. https://doi.org/10.13031/2013.5449
- Song Y., Shen Z., Wu P., Viscarra Rossel R.A. Wavelet geographically weighted regression for spectroscopic modelling of soil properties // Sci. Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-96772-z
- Sorenson P.T., Small C., Tappert M.C., Quideau S.A., Drozdowski B., Underwood A., Janz A. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy // Can. J. Soil Sci. 2017. V. 97. P. 241–248. https://doi.org/10.1139/cjss-2016-0116
- Soriano-Disla J.M.J.M., Janik L.J., Viscarra Rossel R.A., MacDonald L.M., McLaughlin M.J. The Performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties // Appl. Spectrosc. Rev. 2014. V. 49. P. 139–186. https://doi.org/10.1080/05704928.2013.811081
- Steffens M., Zeh L., Rogge D.M., Buddenbaum H. Quantitative mapping and spectroscopic characterization of particulate organic matter fractions in soil profiles with imaging VisNIR spectroscopy // Sci. Rep. 2021. V. 11. https://doi.org/10.1038/s41598-021-95298-8
- Stenberg B., Viscarra Rossel R.A., Mouazen A.M., Wetterlind J. Visible and near infrared spectroscopy in soil science // Adv. in Agr. 2010. V. 107. P. 163–215. https://doi.org/10.1016/S0065-2113(10)07005-7
- Stevens A., Nocita M., Tóth G., Montanarella L., van Wesemael B. Prediction of soil organic carbon at the european scale by visible and near infrared reflectance spectroscopy // PLoS One. 2013. V. 8. https://doi.org/10.1371/journal.pone.0066409
- Stevens A., Ramirez-Lopez L. An introduction to the “prospectr” package. R package version 0.2.6. https://cran.r-project.org/package=prospectr
- Tziolas N., Tsakiridis N., Ogen Y., Kalopesa E., Ben-Dor E., Theocharis J., Zalidis G. An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs // Remote Sens. Environ. 2020. V. 244. https://doi.org/10.1016/j.rse.2020.111793
- Viscarra Rossel R.A., Behrens T., Ben-Dor E., Chabrillat S., Demattê J.A.M., Ge Y., Gomez C. Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13271
- Viscarra Rossel R.A., Bui E.N., De Caritat P., McKenzie N.J. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra // J. Geophys. Res. Earth Surf. 2010. V. 115. https://doi.org/10.1029/2009JF001645
- Viscarra Rossel R.A., Cattle S.R., Ortega A., Fouad Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy // Geoderma. 2009. V. 150. P. 253–266. https://doi.org/10.1016/j.geoderma.2009.01.025
- Viscarra Rossel R.A., Hicks W.S. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions // Eur. J. Soil Sci. 2015. V. 66. P. 438–450. https://doi.org/10.1111/ejss.12237
- Viscarra Rossel R.A., Jeon Y.S., Odeh I.O.A., McBratney A.B. Using a legacy soil sample to develop a mid-IR spectral library // Soil Res. 2008. V. 46. https://doi.org/10.1071/SR07099
- Viscarra Rossel R.A., McBratney A.B., Minasny B. Proximal Soil Sensing. N.Y.: Springer, 2010. 468 p. https://doi.org/10.1007/978-90-481-8859-8
- Wadoux A.M.J.-C., Malone B., Minasny B., Fajardo M., McBratney A.B. Soil Spectral Inference with R. N.Y.: Springer, 2021. 247 p. https://doi.org/10.1007/978-3-030-64896-1
- Wan M., Hu W., Qu M., Li W., Zhang C., Kang J., Hong Y. Rapid estimation of soil cation exchange capacity through sensor data fusion of portable XRF spectrometry and Vis-NIR spectroscopy // Geoderma. 2020. V. 363. https://doi.org/10.1016/j.geoderma.2019.114163
- Wang X., Zhang Y., Atkinson P.M., Yao H. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images // Int. J. Appl. Earth Obs. Geoinf. 2020. V. 92. https://doi.org/10.1016/j.jag.2020.102182
- Wang Y., Huang T., Liu J., Lin Z., Li S., Wang R., Ge Y. Soil pH value, organic matter and macronutrients contents prediction using optical diffuse reflectance spectroscopy // Comput. Electron. Agric. 2015. V. 111. P. 69–77. https://doi.org/10.1016/j.compag.2014.11.019
- Wetterlind J., Viscarra Rossel R.A., Steffens M. Diffuse reflectance spectroscopy characterises the functional chemistry of soil organic carbon in agricultural soils // Eur. J. Soil Sci. 2022. V. 73. https://doi.org/10.1111/ejss.13263
- Xiaobo Z., Jiewen Z., Povey M.J.W., Holmes M., Hanpin M. Variables selection methods in near-infrared spectroscopy // Anal. Chim. Acta. 2010. V. 667. P. 14–32. https://doi.org/10.1016/j.aca.2010.03.048
- Xu S., Zhao Y., Wang M., Shi X. Quantification of Different Forms of Iron from Intact Soil Cores of Paddy Fields with Vis-NIR Spectroscopy // Soil Sci. Soc. Am. J. 2018. V. 82. P. 1497–1511. https://doi.org/10.2136/sssaj2018.01.0014
- Yang Y., Shen Z., Bissett A., Viscarra Rossel R.A. Estimating soil fungal abundance and diversity at a macroecological scale with deep learning spectrotransfer functions // Soil. 2022. V. 8. P. 223–235. https://doi.org/10.5194/soil-8-223-2022
- Yang Y., Viscarra Rossel R.A., Li S., Bissett A., Lee J., Shi Z., Behrens T., Court L. Soil bacterial abundance and diversity better explained and predicted with spectro-transfer functions // Soil Biol. Biochem. 2019. V. 129. P. 29–38. https://doi.org/10.1016/j.soilbio.2018.11.005
- Zhong L., Guo X., Xu Z., Ding M. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks // Geoderma. 2021. V. 402. https://doi.org/10.1016/j.geoderma.2021.115366
- Zhou Y., Chen S., Hu B., Ji W., Li S., Hong Y., Xu H. Global soil salinity prediction by open soil Vis-NIR spectral library // Remote Sens. 2022. V. 14. https://doi.org/10.3390/rs14215627
- Ziechmann W. Spectroscopic investigations of lignin, humic substances and peat // Geochim. Cosmochim. Acta. 1964. V. 28. P. 1555–1566. https://doi.org/10.1016/0016-7037(64)90006-7
Supplementary files
