The Biochemical Activity of Litter as an Indicator of Soil Quality in Pine Forests of Eastern Fennoscandia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the example of ferruginous illuvial podzols and podzolized podburs (Albic Podzol and Entic Podzol), the biochemical activity of forest litter was studied in gradients of: (1) edaphic and climatic conditions and (2) anthropogenic pollution. First, Blueberry (BP), lingonberry (LinP), and lichen (LicP) pine forests from the middle subzone of the taiga were the objects of the study, along with LinP located in the middle and northern taiga forests (Karelia) and on the border of the taiga and forest-tundra (Murmansk region). Second, there are pine forests at different distances from the zone of influence of the Pechenganikel mining and metallurgical plant. The study examined how the “ground cover – litter” system affected soil enzymes and chemical properties (pH, C, N, P, K, S, Cu, Ni). It was shown that in the LinP of the middle subzone of the taiga, the activity of invertase and phosphatase in the forest litter was 1.5–1.8 times higher compared to the BP and LinP. Changes in climatic conditions (a decrease in average daily temperature by 2–3°C) were accompanied by a decrease in the activity of catalase by 58 and 69%, urease by 43 and 52%, and invertase by 51 and 28%. It has been suggested that the absence of significant differences in the activity of the studied enzymes in the forest litter, depending on the accumulation of copper and nickel in it, may indicate a high adaptive potential of the microorganisms – soil system. The possibility of using soil biochemical activity in monitoring studies of the state of forest biogeocenoses is discussed.

About the authors

N. A. Galibina

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: galibina@krc.karelia.ru
ORCID iD: 0000-0003-1473-3574
Russian Federation, Petrozavodsk, 185910

K. M. Nikerova

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Russian Federation, Petrozavodsk, 185910

E. V. Moshkina

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Russian Federation, Petrozavodsk, 185910

A. V. Klimova

Forest Research Institute of the Karelian Research Centre of the Russian Academy of Sciences

Email: galibina@krc.karelia.ru
Russian Federation, Petrozavodsk, 185910

References

  1. Атлас Карельской АССР: М., 1989. 40 с.
  2. Базилевич Н.И., Титлянова А.А. Биотический круговорот на пяти континентах: азот и зольные элементы в природных наземных экосистемах. Новосибирск: Изд-во СО РАН, 2008. 381 с.
  3. Водяницкий Ю.Н., Яковлев А.С. Оценка загрязнения почвы по содержанию тяжелых металлов в профиле // Почвоведение. 2011. № 3. С. 329–335.
  4. Зинченко М.К., Зинченко С.И. Ферментативный потенциал агроландшафтов серой лесной почвы Владимирского ополья // Успехи соврем. естествозн. 2015. № 1–8. С. 1319–1323.
  5. Казеев К.Ш., Солдатов В.П., Шхапацев А.К., Шевченко Н.Е., Грабенко Е.А., Ермолаева О.Ю., Колесников С.И. Изменение свойств дерново-карбонатных почв после сплошной рубки в хвойно-широколиственных лесах Северо-Западного Кавказа // Лесоведение. 2021. № 4. С. 426–436. https://doi.org/10.31857/s0024114821040069
  6. Классификация и диагностика почв России. Смоленск: Ойкумкна, 2004. 342 с.
  7. Кузнецова А.И., Лукина Н.В., Тихонова Е.В., Горнов А.В., Горнова М.В., Смирнов В.Э. и др. Запасы углерода в песчаных почвах сосновых лесов на западе России // Почвоведение. 2020. № 8. С. 959–969. https://doi.org/10.31857/s0032180x20080109
  8. Курганова И.Н., Телеснина В.М. Лопес Де Гереню В.О., Личко В.И., Овсепян Л.А. Изменение запасов углерода, микробной и ферментативной активности агродерново-подзолов южной тайги в ходе постагрогенной эволюции // Почвоведение. 2022. № 7. С. 825–842. https://doi.org/10.31857/S0032180X22070073
  9. Ромашкин И.В., Галибина Н.А., Мошников С.А., Геникова Н.В., Мошкина Е.В., Никерова К.М. Комплексная характеристика сосняков, произрастающих в широком спектре лесорастительных условий и состоящих из насаждений разных стадий онтогенеза // Официальный бюллетень “Программы для ЭВМ. Базы данных. Топологии интегральных микросхем”. № 11. от 08.11.2023.
  10. Разнообразие почв и биоразнообразие в лесных экосистемах средней тайги / Под ред. Федорец Н.Г. М.: Наука, 2006. 287 с.
  11. Ромашкин И.В., Геникова Н.В., Крышень А.М., Мошников С.А., Поликарпова Н.В. Зависимость радиального прироста Pinus sylvestris (Pinaceae) от метеорологических условий и аэротехногенного загрязнения на северо-западе Мурманской области // Раст. ресурсы. 2023. № 1. C. 76–92. https://doi.org/10.31857/S0033994623010089
  12. Хазиев Ф.Х. Экологические связи ферментативной активности почв // Экобиотех. 2018. № 1. С. 80–92.
  13. Хазиев Ф.Х. Методы почвенной энзимологии. М.: Наука, 2005. 251 с.
  14. Хазиев Ф.Х. Функциональная роль ферментов в почвенных процессах // Вестник АН Республики Башкортостан. 2015. Т. 20. № 2. С. 14–24.
  15. Хазиев Ф.Х., Гулько А.Е. Ферментативная активность почв агроценозов и перспективы ее изучения // Почвоведение. 1991. № 8. С. 88–103.
  16. Щелчкова М.В., Жерготова М.С. Ферментативная активность мерзлотной лугово-черноземной почвы транспортной зоны Аэропорт-Якутск // Природные ресурсы Арктики и Субарктики. 2014. № 2. С. 14–18.
  17. Юрковская Т.К., Елина Г.А. Восстановленная растительность Карелии на геоботанической и палеокартах. Петрозаводск: Карельский научный центр РАН, 2009. 136 с.
  18. Błońska E., Lasota J., Zwydak M. The relationship between soil properties, enzyme activity and land use // For. Res. Pap. 2017. V. 78. P. 39–44. https://doi.org/10.1515/frp-2017-0004
  19. Brandt J. P., Flannigan M. D., Maynard D. G., Thompson I.D., Volney W.J.A. An introduction to Canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues // Environ. Rev. 2013. V. 21. P. 207–226. https://doi.org/10.1139/er-2013-0040
  20. Bungau S., Behl T., Aleya L., Bourgeade P., Aloui-Sossé B., Purza A.L. Abid A., Dora A. S. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management // Environ. Sci. Pollut. Res. 2021. V. 28. P. 30528–30550. https://doi.org/10.1007/s11356-021-14127-7
  21. Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlay R.D., Wardle D.A., Lindahl B.D. Roots and associated fungi drive long-term carbon sequestration in boreal forest // Science. 2013. V. 339. P. 1615–1618. https://doi.org/10.1126/science.1231923
  22. Corstanje R., Schulin R., Lark R. Scale – dependent relationships between soil organic matter and urease activity // Eur. J. Soil Sci. 2007. V. 58. P. 1087–95. https://doi.org/10.1111/j.1365-2389.2007.00902.x
  23. Das S.K., Varma A. Role of enzymes in maintaining soil health // In Soil Enzymology. 2011. P. 22–42. https://doi.org/10.1007/978-3-642-14225-3_2
  24. Delarue F., Laggoun-Défarge F., Buttler A., Gogo S., Jassey V.E.J., Disnar, J.-R. Effects of short-term ecosystem experimental warming on water-extractable organic matter in an ombrotrophic Sphagnum peatland (Le Forbonnet, France) // Org. Geochem. 2011. V. 42. P. 1016–1024. https://doi.org/10.1016/j.orggeochem.2011.07.005
  25. Galibina N.A., Moshnikov S.A., Nikerova K.M., Afoshin N.V., Ershova M.A., Ivanova D.S. et al. Changes in the intensity of heartwood formation in Scots pine (Pinus sylvestris L.) ontogenesis // IAWA. 2022. V. 43. P. 299–321. https://doi.org/10.1163/22941932-bja10082
  26. Germon A., Laclau J-P., Robin A., Jourdan C. Deep fine roots in forest ecosystems: Why dig deeper? // For. Ecol. Manage. 2020. V. 466. P. 118135. https://doi.org/10.1016/j.foreco.2020.118135
  27. Gianfreda L., Rao M.A. Soil enzymes activities for soil quality assessment // In Bioremediation of Agricultural Soils. 2019. P. 239–261. https://doi.org/10.1201/9781315205137-12
  28. Hartmann H., Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know // New Phytol. 2016. V. 211. P. 386–403. https://doi.org/10.1111/nph.13955
  29. Hewins D.B., Chuan X., Bork E.W., Carlyle C.N. Measuring the effect of freezing on hydrolytic and oxidative extracellular enzyme activities associated with plant litter decomposition // Pedobiologia. 2016. V. 59. P. 253–256. https://doi.org/10.1016/j.pedobi.2016.09.002
  30. Högberg P., Högberg M.N., Göttlicher S.G., Betson N.R., Keel S.G., Metcalfe D.B., Näsholm T. High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms // New Phytol. 2008. V. 177. P. 220–228. https://doi.org/10.1111/j.1469-8137.2007.02238.x
  31. Hu X.-F., Jiang Y., Shu Y., Hu X., Liu L., Luo F. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields // J. Geochem. Explor. 2014. V. 147. P. 139–150. https://doi.org/10.1016/j.gexplo.2014.08.001
  32. IUSS Working Group WRB. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. № 106. 2014. FAO, Rome. P. 181.
  33. Joseph J., Gao D., Backes B., Bloch C., Brunner I., Gleixner G. et al. Rhizosphere activity in an old-growth forest reacts rapidly to changes in soil moisture and shapes whole-tree carbon allocation // Proc. Natl. Acad. Sci. 2020. V. 117. P. 24885–24892. https://doi.org/10.1073/pnas.2014084117
  34. Karaca A., Cetin S.C., Turgay O.C., Kizilkaya R. Soil Enzymes as Indication of Soil Quality // Soil Biol. 2010. P. 119–48. https://doi.org/10.1007/978-3-642-14225-3_7
  35. Karthikeyan A.S., Varadarajan D.K., Mukatira U.T., D’Urzo M.P., Damaz B., Raghothama K.G. Regulated Expression of Arabidopsis Phosphate Transporters // Plant Physiol. 2002. V. 130. P. 221–233. https://doi.org/10.1104/pp.020007
  36. Maphuhla N.G., Lewu F.B., Oyedeji O.O. The effects of physicochemical parameters on analysed soil enzyme activity from alice landfill site // Int. J. Environ. Res. Publ. Health. 2020. V. 18. P. 221. https://doi.org/10.3390/ijerph18010221
  37. Martinez-Salgado M.M., Gutiérrez-Romero V., Jannsens M., Ortega-Blu R. Biological Soil Quality Indicators // Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Ed. Mendez-Vilas A. 2010.
  38. Moghimian N., Hosseini S.M., Kooch Y., Darki B.Z. Impacts of changes in land use/cover on soil microbial and enzyme activities // Catena. 2017. V. 157. P. 407–414. https://doi.org/10.1016/j.catena.2017.06.003
  39. Olsson R. Boreal Forest and Climate Change // Air Pollution and Climate Secretariat. 2009. V. 23. P. 9.
  40. Ovsepyan L., Kurganova I., Lopes de Gerenyu V., Kuzyakov Y. Conversion of cropland to natural vegetation boosts microbial and enzyme activities in soil // Sci. Total Environ. 2020. V. 743. P. 140829. https://doi.org/10.1016/j.scitotenv.2020.140829
  41. Panchal P., Preece C., Peñuelas J., Giri J. Soil carbon sequestration by root exudates // Trends Plant Sci. 2022. V. 27. P. 749–757. https://doi.org/10.1016/j.tplants.2022.04.009
  42. Paz-Ferreiro J., Fu S. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations // Land Degradation Development. 2013. V. 27. P. 14–25. http://dx.doi.org/10.1002/ldr.2262
  43. Prescott C.E., Grayston S.J., Helmisaari H-S., Kaštovská E., Körner C., Lambers H. et al. Surplus carbon drives allocation and plant–soil interactions // Trends Ecol. Evol. 2020. V. 35. P. 1110–1118. https://doi.org/10.1016/j.tree.2020.08.007
  44. Rinʹkis G., Ramane K.K., Kunitskaia T.A. Methods of analyzing soils and plants. Riga: Zinatne, 1987. 174 p.
  45. Sah S.P., Bryant C.L., Leppälammi-Kujansuu J., Lõhmus K., Ostonen I., Helmisaari H-S. Variation of carbon age of fine roots in boreal forests determined from 14C measurements // Plant Soil. 2013. V. 363. P. 77–86. https://doi.org/10.1007/s11104-012-1294-4
  46. Sardans J., Peñuelas J., Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland // Appl. Soil Ecology. 2008. V. 39. P. 223–235. https://doi.org/10.1016/j.apsoil.2007.12.011
  47. Schloter M., Dilly O., Munch J.C. Indicators for evaluating soil quality // Agric. Ecosyst. Environ. 2003. V. 98. P. 255–262. https://doi.org/10.1016/s0167-8809(03)00085-9
  48. Sethi S., Gupta S. Responses of soil enzymes to different heavy metals // Biolife. 2015. V. 3. P. 147–153.
  49. Shen J., Zeng Y., Zhuang X., Sun L., Yao X., Pimpl P., Jiang L. Organelle pH in the Arabidopsis Endomembrane System // Mol. Plant. 2013. V. 6. P. 1419–1437. https://doi.org/10.1093/mp/sst079
  50. Silva-Olaya A.M., Mora-Motta D.A., Cherubin M.R., Grados D., Somenahally A., Ortiz-Morea F.A. Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region // PLOS ONE. 2021. V. 16. P. e0255669. https://doi.org/10.1371/journal.pone.0255669
  51. Skujins J.J. Extracellular enzymes in soil // Crit. Rev. Microbiol. 1976. V. 4. P. 383–421. https://doi.org/10.3109/10408417609102304
  52. Steffen W., Richardson K., Rockström J. Cornell S.E., Fetzer I., Bennett M.E. et al. Planetary boundaries: Guiding human development on a changing planet // Science. 2015. V. 347(6223). P. 1259855. https://doi.org/10.1126/science.1259855
  53. Tarelkina T.V., Galibina N.A., Moshnikov S.A., Nikerova K.M., Moshkina E.V., Genikova N.V. Anatomical and Morphological Features of Scots Pine Heartwood Formation in Two Forest Types in the Middle Taiga Subzone // Forests. 2022. V. 13. P. 91. https://doi.org/10.3390/f13010091
  54. Tyler G. Heavy metal pollution, phosphatase activity, and mineralization of organic phosphorus in forest soils // Soil Biol. Biochem. 1976. V. 8. P. 327–332. https://doi.org/10.1016/0038-0717(76)90065-1
  55. Utobo E.B., Tewari L. Soil enzymes as bioindicators of soil ecosystem status // Appl. Ecol. Environ. Res. 2015. V. 13. P. 147–169. http://dx.doi.org/10.15666/aeer/1301_147169
  56. Versaw W.K., Harrison M.J. A Chloroplast Phosphate Transporter, PHT2; 1, Influences Allocation of Phosphate within the Plant and Phosphate-Starvation Responses // Plant Cell. 2002. V. 14. P. 1751–1766. https://doi.org/10.1105/tpc.002220
  57. Wang W., Page-Dumroese D., Lv R., Xiao C., Li G., Liu Y. Soil enzyme activities in Pinus tabuliformis (Carriére) plantations in Northern China // Forests. 2016. V. 7. P. 112. https://doi.org/10.3390/f7060112
  58. Weatherarchive.ru [Электронный ресурс]. URL: http://weatherarchive.ru. / дата обращения: 20.02.2024
  59. Wyszkowska J., Kucharski J. Liczebnosc drobnoustrojow w glebie zanieczyszczonej metalami ciezkimi // Zeszyty Problemowe Postępów Nauk Rolniczych. 2003. V. 492. P. 427–433.
  60. Yang Y.Z., Liu S., Zheng D., Feng S. Effects of cadium, zinc and lead on soil enzyme activities // Journal of Environmental Sciences. 2006. V. 18. P. 1135–1141. https://doi.org/10.1016/s1001-0742(06)60051-x
  61. Yeboah J.O., Shi G., Shi W. Effect of Heavy Metal Contamination on Soil Enzymes Activities // J. Geosci. Environ. Prot. 2021. V. 9. P. 135–154. https://doi.org/10.4236/gep.2021.96008

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (153KB)
3. Fig. 1. Soil profiles in 70-80-year-old pine forests of blueberry, Kvch2 (a), lingonberry, Kvch1, 9 (b) and lichen, Kvch8 (c). Activity of soil enzymes (d) in the litter of bilberry (BC), lingonberry (SB) and lichen (SL) pine forests located in the middle taiga subzone.

Download (791KB)
4. Fig. 2. (a) Activity of catalase, invertase, urease and phosphatase in horizons (1 - organogenic, 2 - eluvial, 3 - illuvial, 4 - transitional to parent rock) of podzols represented in pine forests of the middle taiga subzone (Kvch1, Kvch2, Kvch9). (b) ANOSIM analysis of a dataset including soil enzyme activities and chemical properties of soil horizons of pine forests located in the middle taiga subzone (Kvch1, Kvch2, Kvch9). (c) Classification of 20 study sites based on soil enzyme activity data (catalase, invertase, urease, phosphatase) and soil properties (aqueous and saline pH, carbon content (%), total (%) and hydrolysable (mg/kg soil) nitrogen, total and mobile phosphorus (mg/kg soil), mobile potassium (mg/kg soil)). Factor 1 (78% of the variance) correlated with catalase, urease, invertase, and phosphatase activities; total carbon, total nitrogen, mobile potassium, and hydrolysable nitrogen contents. Factor 2 (12% of the variance) correlates with aqueous and saline pH; C/N ratio; mobile phosphorus content.

Download (426KB)
5. Fig. 3. (a) Activity of catalase, invertase, urease and phosphatase in litter of lingonberry pine forest soils located in different natural zones. MT, middle taiga subzone (Kvch1, 9); NT, northern taiga subzone (Klv10); NT/T, taiga-forest-tundra boundary (Psv12). (b) ANOSIM analysis of a dataset including soil enzyme activities and chemical properties of soils of lingonberry pine forests located in the middle taiga subzone, northern taiga subzone, and taiga-forest tundra boundary. (c) Classification of 22 study sites based on soil enzyme activity data (catalase, invertase, urease, phosphatase) and soil properties (aqueous and saline pH, carbon content (%), total (%) and hydrolysable (mg/kg soil) nitrogen, total and mobile phosphorus (mg/kg soil), mobile potassium (mg/kg soil)). Factor 1 (44% of the variance) correlated with catalase, urease and invertase activity; with aqueous and saline pH; and hydrolysable nitrogen content. Factor 2 (26% of variance) correlates with the content of total nitrogen, mobile phosphorus, mobile potassium.

Download (525KB)
6. Fig. 4. Copper content (a), nickel content (b) and activity of catalase (c), invertase (d), urease (e), phosphatase (f) in litter soils of lingonberry pine forests located at different distances from Pechenganickel mining and smelting plant (68 and 81 km (K) - 48 km - 26 km - 11 km).

Download (470KB)

Copyright (c) 2024 Russian Academy of Sciences