Assessment of the Influence of environmental factors on carbon stock in forest soils of Bryansk Poles’e

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The search informative indicators of variation in soil carbon stock coniferous–broadleaf forest has a high predictive value. This article provides an assessment of the contribution of environmental factors to the variation of carbon stock in the forest soils. The study was carried out on the territory of the Bryansk Forest reserve on 45 sample plots located in different landscapes. Five groups of factors characterizing vegetation, macrofauna, landscape, relief, and history of environmental management were analyzed. Statistical relationships between carbon stock indicators and environmental factors were assessed using machine learning methods. The main factor determining the carbon stock in litter was the quality of litter, formed by the dominants of the trees, herbaceous and moss layers. Position in the landscape and other orographic characteristics were less informative. The highest carbon stock of the OL-subhorizon of the litter was in forests with a high proportion of pine. The most informative indicator for determining the variation in carbon stock FH-subhorizon of the litter was the projective cover of mosses. The results of regression analysis for the carbon stock in the A horizon and in the 0-30 cm layer demonstrated a significant contribution of indicators showing the increased hydromorphism, as well as characteristics connected with functional organization of forest ecosystems, namely the ecological-coenotic structure of plant communities (the proportion of nemoral species in the layer undergrowth and shrubs) and functional diversity of earthworms.

About the authors

A. I. Kuznetsova

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Author for correspondence.
Email: nasta472288813@yandex.ru
Russian Federation, Moscow, 117997

E. A. Gavrilyuk

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Email: nasta472288813@yandex.ru
Russian Federation, Moscow, 117997

A. V. Gornov

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Email: nasta472288813@yandex.ru
Russian Federation, Moscow, 117997

E. V. Ruchinskaya

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Email: nasta472288813@yandex.ru
Russian Federation, Moscow, 117997

A. P. Geraskina

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Email: nasta472288813@yandex.ru
Russian Federation, Moscow, 117997

A. D. Nikitina

Center for Forest Ecology and Productivity of the Russian Academy of Sciences

Email: nasta472288813@yandex.ru
Russian Federation, Moscow, 117997

References

  1. Аккумуляция углерода в лесных почвах и сукцессионный статус лесов / Под ред. Лукиной Н.В. М.: Товарищество научных изданий КМК, 2018. 232 с.
  2. Баева Ю.И., Курганова И.Н., Почикалов А.В., Кудеяров В.Н. Физические свойства и изменение запасов углерода серых лесных почв в ходе постагрогенной эволюции (юг Московской области) // Почвоведение. 2017. № 3. C. 345–353. https://doi.org/10.7868/S0032180X17030029
  3. Басова Е.В., Лукина Н.В., Кузнецова А.И., Горнов А.В., Шевченко Н.Е., Тихонова Е.В., Гераськина А.П., Браславская Т.Ю., Тебенькова Д.Н., Луговая Д.Л. Качество древесного опада как информативный индикатор функциональной классификации лесов // Вопросы лесной науки. 2022. Т. 5. № 3. С. 1–21. https://doi.org/10.31509/2658-607x-202252-113
  4. Гаврилюк Е.А., Горнов А.В., Ершов Д.В. Оценка пространственного распределения видов деревьев заповедника “Брянский лес” и его охранной зоны на основе разносезонных спутниковых данных Landsat // Бюл. Брянского отделения РБО. 2018. № 3(15). С. 13–23. https://doi.org/10.22281/2307-4353-2018-3-13-23
  5. Гаврилюк Е.А., Кузнецова А.И., Горнов А.В. Геопространственное моделирование содержания и запасов азота и углерода в лесной подстилке на основе разносезонных спутниковых изображений Sentinel-2 // Почвоведение. 2021. №. 2. С. 168–182.
  6. Гераськина А.П. Влияние дождевых червей разных морфо-экологических групп на аккумуляцию углерода в лесных почвах // Вопросы лесной науки. 2020. Т. 3. № 2. С. 1–20.
  7. Демаков Ю.П., Исаев А.В., Нуреев Н.Б., Митякова И.И. Границы и причины вариабельности запасов гумуса в почвах лесов Среднего Поволжья // Вестник Поволжского государственного технологического университета. Сер. Лес. Экология. Природопользование. 2018. № 3. С. 30–49. https://doi.org/10.15350/2306-2827.2018.3.30
  8. Евстигнеев О.И., Федотов Ю.П., Кайгородова Е.Ю. Природа Неруссо-Деснянского Полесья. Брянская область. Редкие растения. Библ. 49, илл.223. Брянск: Десна, 2000. 159 с.
  9. Киселева Ю.А. Особенности формирования почв полесий на примере заповедника “Брянский лес” (вновь к вопросу о буроземо- и подзолообразовании) // Роль почв в биосфере. Тр. Ин-та почвоведения МГУ РАН. М. 2002. Вып. 1. С. 56–78.
  10. Классификация и диагностика почв России. Смоленск: Ойкумена. 2004. 342 с.
  11. Лукина Н.В., Гераськина А.П., Горнов А.В., Шевченко Н.Е., Куприн А.В., Чернов Т.И., Чумаченко С.И., Шанин В.Н., кузнецова А.И., Тебенькова Д.Н., Горнова М.В. Биоразнообразие и климаторегулирующие функции лесов: актуальные вопросы и перспективы исследований // Вопросы лесной науки. 2020. Т. 3. № 4. С. 1–90.
  12. Лукина Н.В., Гераськина А.П., Кузнецова А.И., Смирнов В.Э., Горнов А.В., Шевченко Н.Е., Тихоновa Е.В., Тебенькова Д.Н., Басова Е.В. Функциональная классификация лесов: актуальность и подходы к разработке // Лесоведение. 2021. №. 6. С. 566–580. https://doi.org/10.31857/S0024114821060085
  13. Лукина Н.В., Кузнецова А.И., Гераськина А.П., Смирнов В.Э., Иванова В.Н., Тебенькова Д.Н., Горнов А.В., Шевченко Н.Е., Тихонова Е.В. Неучтенные факторы, определяющие запасы углерода в лесных почвах // Метеорология и гидрология. 2022. №.10. С. 92–110.
  14. Распоряжение Министерства природных ресурсов и экологии РФ от 30 июня 2017 г. № 20-р “О методических указаниях по количественному определению объема поглощения парниковых газов” https://www.garant.ru/products/ipo/prime/doc/71612096/ (дата обращения 01.07.2021).
  15. Соколов Л.А. К вопросу классификации почвообразующих и подстилающих горных пород Брянского лесного массива // Вклад ученых и специалистов в национальную экономику. Брянск, 1998. Т. 2. 125 с.
  16. Стриганова Б.Р. Питание почвенных сапрофагов. М.: Наука, 1980. C. 8–15.
  17. Телеснина В.М., Курганова И.Н., Овсепян Л.А., Личко В.И., Ермолаев А.М., Мирин Д.М. Динамика свойств почв и состава растительности в ходе постагрогенного развития в разных биоклиматических зонах // Почвоведение. 2017. № 12. С. 1514–1534. https://doi.org/10.7868/S0032180X17120115
  18. Bauer D.F. Constructing confidence sets using rank statistics // J. Am. Statistical Association. 1972. V. 67. P. 687–690. https://doi.org/10.1080/01621459.1972.10481279
  19. Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency // Annals of Statistics. 2001. V. 29. P. 1165–1188. https://doi.org/10.1214/aos/1013699998
  20. Cortes C., Vapnik V. Support-vector networks // Machine Learning. 1995. V. 20. № 3. P. 273–297.
  21. Cotrufo M.F., Ranalli M.G., Haddix M.L. Soil carbon storage informed by particulate and mineral-associated organic matter // Nat. Geosci. 2019. V. 12. P. 989–994. https://doi.org/10.1038/s41561-019-0484-6
  22. Curry J.P. Factors affecting the abundance of earthworms in soils. In Earthworm Ecology. Boca Raton: CRC Press FL, 1994.
  23. De Deyn G.B., Cornelissen J.H., Bardgett R.D. Plant functional traits and soil carbon sequestration in contrasting biomes // Ecology Lett. 2008. V. 11. № 5. P. 516–531.
  24. Eldridge D.J., Guirado E., Reich P.B. et al. The global contribution of soil mosses to ecosystem services. // Nat. Geosci. 2023. V. 16. P. 430–438. https://doi.org/10.1038/s41561-023-01170-x
  25. Ferri F.J., Pudil P., Hatef M., Kittler J. Comparative study of techniques for large-scale feature selection // Pattern Recognition in Practice IV. 1994. P. 403–413.
  26. Huang W., Gonzalez G., Zou X. Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis // Appl. Soil Ecology. 2020. V. 150. P. 1–15.
  27. Ilich A.R., Misiuk B., Lecours V., Murawski S.A. MultiscaleDTM: An open-source R package for multiscale geomorphometric analysis // Transactions in GIS. 2023. V. 27. №. 4. https://doi.org/10.1111/tgis.13067
  28. Kasimir Å., He H., Jansson P-E., Lohila A., Minkkinen K. Mosses are important for soil carbon sequestration in forested peatlands // Front. Environ. Sci. 2021. V. 9. P. 680430. https://doi.org/10.3389/fenvs.2021.680430
  29. Kuznetsova A.I., Geraskina A.P., Lukina N.V., Smirnov V.E., Tikhonova E.V., Shevchenko N.E., Gornov A.V., Ruchinskaya E.V., Tebenkova D.N. Linking vegetation, soil carbon stocks, and earthworms in upland coniferous–broadleaf forests // Forests. 2021. V. 12. P. 1179. https://doi.org/10.3390/f12091179
  30. Liu Y., Shangguan Z., Deng L. Vegetation type and soil moisture drive variations in leaf litter decomposition following secondary forest succession // Forests. 2021. V. 12. P. 1195. https://doi.org/10.3390/f12091195
  31. Maes S.L., Blondeel H., Perring M.P., Depauw L., Brūmelis G., Brunet J., Verheyen K. Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests // Forest Ecology and Management. 2019. V. 433. P. 405–418.
  32. Prescott C.E., Zabek L.M., Staley C.L., Kabzems R. Decomposition of broadleaf and needle litter in forests of British Co-lumbia: influences of litter type, forest type, and litter mixtures // Can. J. Forest Res. 2000. V. 30. P. 1742–1750.
  33. R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, 2023. URL: https://www.R-project.org/ (дата обращения 03.10.2023).
  34. Ryzhova I.M., Podvezennaya M.A., Telesnina V.M. assessment of carbon stock and CO2 production potential for soils of coniferous-broadleaved forests // Eurasian Soil Science. 2023. V. 56. P. 1317–1326. https://doi.org/10.1134/S1064229323601166
  35. Semenov V.M., Lebedeva T.N., Zinyakova N.B. dependence of soil organic matter and plant residues decomposition on temperature and moisture in the long-term incubation experiments // Eurasian Soil Science. 2022. V. 55. P. 926–939. https://doi.org/10.1134/S1064229322070080
  36. Telesnina V.M., Semenyuk O.V., Bogatyrev L.G. Litters and living ground cover as informational characteristics of biogeocenoses for the small-leaved forests in moscow oblast forests // Eurasian Soil Science. 2023. V. 56. P. 841–853. https://doi.org/10.1134/S1064229323600513
  37. Weihs C., Ligges U., Luebke K., Raabe N.R. analyzing german business cycles // Data Analysis and Decision Support. Berlin: Springer-Verlag, 2005. P. 335–343.
  38. Wiesmeier M., Urbanski L., Hobley E., Lang B., von Luetzow M., Marin-Spiotta E., van Wesemael B., Rabot E., Ließ M., Garcia-Franco N., Wollschläger U., VogelfIngrid H.-J., Kögel-Knabner I. Soil organic carbon storage as a key function of soils – a review of drivers and indicators at various scales // Geoderma. 2019. V. 333. P. 149–162.
  39. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports / IUSS Working Group. Rome: FAO, 2015. 203 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix 1
Download (318KB)
3. Appendix 2
Download (394KB)
4. Fig. 1. Study area: 1 – sample plots in nitrophilous-grass black alder forests, 2 – in dwarf shrub-green moss birch forests, 3 – in nemoral-grass birch forests, 4 – in complex pine forests, 5 – in dwarf shrub-green moss pine forests, 6 – in nemoral-grass broadleaf forests, 7 – boundary of the Bryansk Forest Nature Reserve, 8 – moraine-outwash landscape, 9 – outwash landscape, 10 – terrace, 11 – floodplain, 12 – small river floodplains, 13 – other landscape types, 14 – permanent watercourses. Designations of countries and administrative units on the inset map are given according to ISO-3166.

Download (960KB)
5. Fig. 2. Scatter plot of normalized carbon stock values (ordination) for (a) landscape types: 1 – moraine-outwash, 2 – outwash, 3 – terrace, 4 – small river floodplain, 5 – Nerussa River floodplain; (b) forest types: 6 – nitrophilous-grass black alder forests, 7 – dwarf shrub-green moss birch forests, 8 – nemoral grass birch forests, 9 – complex pine forests, 10 – dwarf shrub-green moss pine forests, 11 – broadleaf nemoral grass forests.

Download (316KB)
6. Fig. 3. Change in the coefficient of determination of the multiple regression model reflecting the effect of adding a variable to the model. CstL – carbon stock of the OL – litter subhorizon; CstFH – carbon stock of the OFH – litter subhorizon; Cst0-10 – carbon stock in the 0–10 cm layer; Cst0-30 – carbon stock in the 0–30 cm layer; CstA – carbon stock of horizon A. The vertical axis of the graphs is the coefficient of determination (R2). The data are signed with the effect of adding a variable on the R2 value. The horizontal axis represents variables, where Base is the basic statistical model. VEG_pine_A – the proportion of pine in the tree layer, %; VEG_emla_A – the total proportion of elm, maple, linden and ash in the tree layer, %; VEG_alnus_A – the proportion of black alder in the tree layer, %; VEG_den_C – the projective cover of the herb layer, %; VEG_den_D – the projective cover of the moss layer, %; VEG_nitr_B – the proportion of nitrophilous species in the undergrowth and shrub layer, %; VEG_nem_B – proportion of nemoral species in the undergrowth and shrub layer, %; SMF_sapr – saprophagous biomass, g/m2; SMF_ngr – number of earthworm groups, LSC_fp – location in river floodplains.

Download (472KB)

Copyright (c) 2025 Russian Academy of Sciences