Iron-manganese nodules of soils from natural landscapes of the South of Russian Far East

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure, composition, and specificity of microelements accumulation by the rounded nodules of soddy-brown-podzolic gleyic soils (Gleyic Luvisol (Manganiferric)) from nature reserves and a national park in the south of the Far East were studied using advanced analytical methods and noninvasive techniques. The nodules are characterized by pronounced differentiation into external (brown and ocher-brown, Fe-enriched, dense) and internal (dark brown, Mn-enriched, loose) zones. According to the Mn compounds distribution in the internal zone, two types of nodules were identified: with an undifferentiated internal zone and with a core(s). The cores contain C-enriched microzones, which are centers of Fe and Mn presipitation. The stages of the co-precipitation of Fe and Mn and the stages with predominant precipitation of one of the elements were identified in the nodules. The nodules consist of a complex of minerals inherited from soils as well as nodule-specific minerals (goethite, feroxyhyte, and birnessite). The Fe content in the nodules was on average 4 times higher than the soil content, the Mn content was 21.9 times higher, and the C content was 3.6 times higher. In the nodules, Pb accumulates most intensively (EF 5.53–12.14); its accumulation is determined by the combined participation of C- and Mn-containing compounds. Nickel (EF 0.89–5.81) and Cr (EF 1.22–2.60) accumulate less actively; V (EF 0.85–1.88) and Sr (EF 0.58–1.43) accumulate weakly. The phases accumulating Ni, Cr, V, and Sr are compounds of nodules containing Fe and C. Zinc does not accumulate in nodules. A comparison of the microelement water-soluble form concentrations indicates a decrease in the mobility of Cr, Pb, Ni, V, and Sr in nodules compared to soils.

About the authors

Ya. O. Timofeeva

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Author for correspondence.
Email: timofeeva@biosoil.ru
ORCID iD: 0000-0002-0829-7107
Russian Federation, Vladivostok, 690022

A. A. Karabtsov

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: timofeeva@biosoil.ru
Russian Federation, Vladivostok, 690022

M. L. Burdukovskii

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Email: timofeeva@biosoil.ru
ORCID iD: 0000-0003-1806-6721
Russian Federation, Vladivostok, 690022

L. N. Purtova

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Email: timofeeva@biosoil.ru
ORCID iD: 0000-0001-7776-7419
Russian Federation, Vladivostok, 690022

E. S. Martynenko

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences

Email: timofeeva@biosoil.ru
Russian Federation, Vladivostok, 690022

References

  1. Водяницкий Ю.Н. Оксиды марганца в почвах. М.: Почв. ин-т им. В.В. Докучаева, 2005. 96 с.
  2. Водяницкий Ю.Н. Соединения железа и их роль в охране почв. М.: Почв. ин-т им. В.В. Докучаева, 2010. 282 с.
  3. Водяницкий Ю.Н. Тяжелые и сверхтяжелые металлы и металлоиды в загрязненных почвах. М.: Почв. ин-т им. В.В. Докучаева, 2009. 184 с.
  4. Водяницкий Ю.Н., Лесовая С.Н., Сивцов А.В. Гидроксидогенез железа в лесных и степных почвах Русской равнины // Почвоведение. 2003. № 4. С. 465–475.
  5. Водяницкий Ю.Н., Савичев А.Т., Васильев А.А., Лобанова Е.С., Чащин А.Н., Прокопович Е.В. Содержание тяжелых щелочноземельных (Sr, Ba) и редкоземельных (Y, La, Ce) металлов в техногенно-загрязненных почвах // Почвоведение. 2010. № 7. С. 879–890.
  6. Водяницкий Ю.Н., Сивцов А.В. Образование ферригидрита, фероксигита и вернадита в почвах // Почвоведение. 2004. № 8. С. 986–999.
  7. Голов В.И. Круговорот серы и микроэлементов в основных агроэкосистемах Дальнего Востока. Владивосток: Дальнаука, 2004. 315 с.
  8. Дмитриев Е.А. Математическая статистика в почвоведении. М.: Либроком, 2009. 328 с.
  9. Зайдельман Ф.Р., Никифорова А.С. Ортштейны – марганцево-железистые конкреционные новообразования (итоги исследований) // Почвоведение. 2010. № 3. С. 270–281.
  10. Зайдельман Ф.Р., Никифорова А.С. Генезис и диагностическое значение новообразований почв лесной и лесостепной зон. М.: Изд-во Моск. ун-та, 2001. 216 с.
  11. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  12. Ковалев И.В., Ковалева Н.О., Столпникова Е.М., Федотов А.Б. Возраст и генезис Fe-Mn конкреций серых лесных почв южной тайги, по результатам изотопных и метагеномных исследований // Вестн. Моск. ун-та. Сер. 17, почвоведение. 2022. № 4. С. 97–105.
  13. Костенков Н.М. Окислительно-восстановительные режимы в почвах периодического увлажнения. М.: Наука, 1987. 192 с.
  14. Пуртова Л.Н., Тимофеева Я.О. Изучение некоторых свойств и активности каталазы агротемногумусовых подбелов при различных видах агротехнического воздействия // Почвоведение. 2022. № 10. С. 1277–1289.
  15. Росликова В.И. Марганцево-железистые новообразования в почвах равнинных ландшафтов гумидной зоны. Владивосток: Дальнаука, 1996. 291 с.
  16. Тимофеева Я.О. Накопление и фракционирование микроэлементов в почвенных железо-марганцевых конкрециях различного размера // Геохимия. 2008. № 13. С. 293–301.
  17. Тимофеева Я.О., Голов В.И. Аккумуляция микроэлементов в ортштейнах почв (обзор литературы) // Почвоведение. 2010. № 4. С. 434–440.
  18. Тимофеева Я.О., Пуртова Л.Н. Влияние органических соединений на накопление Ni, Co, Cu, Cr и Pb в ортштейнах агротемногумусовых подбелов юга Приморского края // Почвоведение. 2024. № 4. С. 537–555.
  19. Cornu S., Deschatrettes V., Salvador-Blanes S., Clozul B., Hardy M., Branchut S., Le Forestier L. Trace element accumulation in Mn-Fe-oxide nodules of a planasolic horizon // Geoderma. 2005. V. 125. P. 11–24. https://doi.org/10.1016/j.geoderma.2004.06.009
  20. Ettler V., Chren M., Mihaljevic M., Drahota P., Kribek B., Veselovsky F., Sracek O., Vanek A., Penizek V., Komarek M., Mapani B., Kamona F. Characterization of Fe–Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area // Geoderma. 2017. V. 299. P. 32–42. https://doi.org/10.1016/j.geoderma.2017.03.022
  21. Feng J-L. Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding terra rossa overlying dolomite: Their mobilization, redistribution and fractionation // J. Geochem. Explor. 2011. V. 108. P. 99–111. https://doi.org/10.1016/j.gexplo.2010.10.010
  22. Gasparatos D. Sequestration of heavy metals from soil with Fe–Mn concretions and nodules // Environ. Chem. Lett. 2013. V. 11. P. 1–9. https://doi.org/10.1007/s10311-012-0386-y
  23. Gasparatos D., Massas I., Godelitsas A. Fe–Mn concretions and nodules formation in redoximorphic soils and their role on soil phosphorus dynamics: Current knowledge and gaps // Catena. 2019. V. 182. P. 104106. https://doi.org/10.1016/j.catena.2019.104106
  24. Huang J-H., Huang F., Evans L., Glasauer S. Vanadium: Global (bio)geochemistry // Chem. Geology. 2015. V. 417. P. 68–894. http://dx.doi.org/10.1016/j.chemgeo.2015.09.019
  25. Huang L. Pedogenic ferromanganese nodules and their impacts on nutrient cycles and heavy metal sequestration // Earth-Sci. Rev. 2022. V. 232. P. 104147. https://doi.org/10.1016/j.earscirev.2022.104147
  26. Jien S-H., Hseu Z-Ye., Chen Z-S. Hydropedological implications of ferromanganiferous nodules in rice-growing plinthitic Ultisols under different moisture regimes // Soil Sci. Soc. Am. J. 2010. V. 74. P. 880–891. https://doi.org/10.2136/sssaj2009.0020
  27. Kabata-Pendias A. Trace elements in soils and plants. N.Y.: CRC Press, 2011.
  28. Palumbo B., Bellanca A., Neri R., Roe M.J. Trace metal partitioning in Fe–Mn nodules from Sicilian soils, Italy // Chem. Geol. 2001. V. 173. P. 257–269. https://doi.org/10.1016/S0009-2541(00)00284-9
  29. Pansu M., Gautheyrou J. Handbook of soil analysis mineralogical, organic and inorganic methods. Berlin: Springer-Verlag, 2006.
  30. Rennerta T., Handelb M., Hoschenc C., Lugmeierc J., Steffensc M., Totscheb K.U. A NanoSIMS study on the distribution of soil organic matter, iron and manganese in a nodule from a Stagnosol // Eur. J. Soil Sci. 2014. V. 65. P. 684–692. https://doi.org/10.1111/ejss.12157
  31. Seguin V., Gagnon C., Courchesne F. Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils // Plant Soil. 2004. V. 260. P. 1–17. https://doi.org/10.1023/B:PLSO.0000030170.49493.5f
  32. Timofeeva Y., Karabtsov A., Burdukovskii M., Vzorova D. Strontium and vanadium sorption by iron-manganese nodules from natural and remediated Dystric Cambisols // J. Soil Sedim. 2024. V. 24. P. 1220–1236. https://doi.org/10.1007/s11368-024-03714-z
  33. Timofeeva Y., Karabtsov A., Ushkova M., Burdukovskii M., Semal V. Variation of trace elements accumulation by iron-manganese nodules from Dystric Cambisols with and without contamination // J. Soil Sedim. 2021. V. 21. P. 1064–1078. https://doi.org/10.1007/s11368-020-02814-w
  34. Timofeeva Ya., Kosheleva Yu., Semal V., Burdukovskii M. Origin, baseline contents, and vertical distribution of selected trace lithophile elements in soils from nature reserves, Russian Far East // J. Soil Sedim. 2018. V. 18. P. 968–982. https://doi.org/10.1007/s11368-017-1847-5
  35. World Reference Base for Soil Resources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. Rome: FAO, 2015.
  36. Yang J., Tang Y., Yang K., Rouff A.A., Elzinga E., Huang J-H. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site // J. Hazard. Mater. 2014. V. 264. P. 498–504. https://doi.org/10.1016/j.jhazmat.2013.09.063
  37. Yu X., Wang Y., Zhou G., Peng G., Brookes P.C., Lu S. Paleoclimatic fingerprints of ferromanganese nodules in subtropical Chinese soils identified by synchrotron radiation-based microprobes // Chem. Geology. 2020. V. 531. P. 119357. https://doi.org/10.1016/j.chemgeo.2019.119357

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix
Download (875KB)
3. Fig. 1. Iron-manganese nodules: (a) – nodules of different sizes, (b) – intra-profile variation in nodule content.

Download (227KB)
4. Fig. 2. Distribution of elements in nodules: (a) – Fe and Mn distribution in the outer and inner zones, (b) – Mn distribution in the inner zone of typical, mono- and polynuclear nodules, (c) – Si, Al and C distribution.

Download (598KB)
5. Fig. 3. Micrographs of structures in nodule cores: (a) – Si-enriched elongated structure, (b), (c) – diatom shells, (d), (e) – spheroidal structures.

Download (870KB)
6. Fig. 4. Change in Fe and Mn concentration during precipitation in nodules: (a) – nodules formed in the upper and middle parts of the profile, (b) – nodules formed in the lower part of the profile.

Download (544KB)
7. Fig. 5. Pseudocrystalline structures in nodules: (a) – areas with high optical density, (b) – micromorphology of Fe–Mn compounds, (c) – honeycomb structures of pseudocrystals of Mn compounds.

Download (513KB)

Copyright (c) 2025 Russian Academy of Sciences