Ecosystem carbon stocks for different types of land use on iron-metamorphic soils of South Karelia
- Authors: Dubrovina I.A.1, Moshkina E.V.2, Tuyunen A.V.2, Genikova N.V.2, Karpechko A.Y.2, Medvedeva M.V.2
-
Affiliations:
- Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences
- Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences
- Issue: No 10 (2024)
- Pages: 1304-1316
- Section: SOIL CHEMISTRY
- URL: https://kld-journal.fedlab.ru/0032-180X/article/view/682595
- DOI: https://doi.org/10.31857/S0032180X24100026
- EDN: https://elibrary.ru/JYDBIQ
- ID: 682595
Cite item
Abstract
Iron-metamorphic soils of normal moistening in the middle taiga subzone of Karelia were investigated. 100-year-old pine forest as a control, arable land, hayfield, and also 15-year-old and 75-year-old pine forests naturally reforestation on former farmland were studied. The influence of different types of land use on the morphological structure of soils and the main chemical and microbiological indicators of the upper horizons was analyzed. The stocks of organic carbon (Corg) and microbial biomass carbon (Cmic) in a meter layer of soils and sites carbon pools structure were investigated. At all sites a uniform accumulative type of carbon distribution and similar values of C/N ratio (16–18) were observed in the soils. The soils are characterized by poor natural fertility and low agrochemical indicators, which significantly improve with agricultural development. The highest content of Corg (4.9%) and Ntot (0.3%) at low bulk density and a neutral pH was noted on the arable land. In the soil of a young forest was recorded the greatest Cmic content (419 mg C/kg). In arable and hayfield areas, Cmic decreases to 209–211 mg C/kg and is minimal in soils of mature forests (144–175 mg C/kg). Microbial biomass carbon stocks in the 0–100 cm soil layer range from 76.5–132.4 g C/m2 in the studied areas. In forest soils, litter Cmic stocks are 12.7–27.4 g C/m2. Soil Corg stocks in a meter layer are maximum in arable land and amount to 272 t C/ha, and decrease in the range of hayfields – mature forest from 98 to 39 t C/ ha. The total ecosystem carbon stocks are maximum in arable land (275 t C/ha), which exceeds stocks in mature forests – 206–221 t C/ha. Corg stocks in hayfield and young forest amount to 105–115 t C/ha.
Full Text
##article.viewOnOriginalSite##About the authors
I. A. Dubrovina
Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences
Author for correspondence.
Email: vorgo@mail.ru
Russian Federation, Petrozavodsk, 185910
E. V. Moshkina
Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences
Email: vorgo@mail.ru
Russian Federation, Petrozavodsk, 185910
A. V. Tuyunen
Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences
Email: vorgo@mail.ru
Russian Federation, Petrozavodsk, 185910
N. V. Genikova
Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences
Email: vorgo@mail.ru
Russian Federation, Petrozavodsk, 185910
A. Yu. Karpechko
Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences
Email: vorgo@mail.ru
Russian Federation, Petrozavodsk, 185910
M. V. Medvedeva
Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences
Email: vorgo@mail.ru
Russian Federation, Petrozavodsk, 185910
References
- Астафьева М.М., Фелицын С.Б., Алфимова Н.А. Бактериальные остатки в нижнепротерозойских красноцветных кварцитах // Палеонтологический журнал. 2021. № 4. С. 94–102. https://doi.org/10.31857/S0031031X21040024
- Атлас Карельской АССР / Под ред. Дурова А.Г. М.: ГУГК СССР, 1989. 40 с.
- Богородская А.В., Шишикин А.С. Динамика микробной биомассы, ее структура и функциональная активность в почвах при лесовозобновлении на вырубках пихтарников Енисейского кряжа // Почвоведение. 2020. № 1. С. 119–130. https://doi.org/10.31857/S0032180X20010050
- Бургхардт В., Хайнц Д., Хоке Н. Показатели почвенного плодородия и запасы органического углерода в почвах овощных грядок и окружающих полей в центре городского промышленного региона Рур в Германии // Почвоведение. 2018. № 11. С. 1384–1397. https://doi.org/10.1134/S0032180X18110114
- Водяницкий Ю.Н., Васильев А.А., Гилев В.Ю. Минералы железа в почвах на красноцветных отложениях Предуралья // Почвоведение. 2007. № 4. С. 474–486.
- Водяницкий Ю.Н., Горячкин С.В., Лесовая С.Н. Оксиды железа в буроземах на красноцветных отложениях Европейской России и цветовая дифференциация почв // Почвоведение. 2003. № 11. С. 1285–1299.
- Геология Карелии / Под ред. Соколова В.А. Л.: Наука, 1987. 231 с.
- Горячкин С.В., Водяницкий Ю.Н., Конюшков Д.Е., Лесовая С.Н., Мергелов Н.А., Титова А.А. Биоклиматогенные и геогенные проблемы географии почв Северной Евразии // Бюл. Почв. ин-та им. В.В. Докучаева. 2008. № 62. С. 48–68.
- Дубровина И.А. Влияние биоугля на агрохимические показатели и ферментативную активность почв средней тайги Карелии // Почвоведение. 2021. № 12. С. 1523–1534. https://doi.org/10.31857/S0032180X21120054
- Дубровина И.А., Мошкина Е.В., Сидорова В.А., Туюнен А.В., Карпечко А.Ю., Геникова Н.В., Медведева М.В., Мамай А.В., Толстогузов О.В., Кулакова Л.М. Влияние типа землепользования на свойства почв и структуру экосистемных запасов углерода в среднетаежной подзоне Карелии // Почвоведение. 2021. № 11. С. 1392–1406. https://doi.org/10.31857/S0032180X21110058
- Дубровина И.А., Мошкина Е.В., Туюнен А.В., Геникова Н.В., Карпечко А.Ю., Медведева М.В. Динамика свойств почв и экосистемные запасы углерода при разных типах землепользования (средняя тайга Карелии) // Почвоведение. 2022. № 9. С. 1112–1125. https://doi.org/10.31857/S0032180X22090052
- Дубровина И.А., Мошкина Е.В., Туюнен А.В., Геникова Н.В., Карпечко А.Ю., Медведева М.В. Почвы и пулы углерода на шунгитовых породах Южной Карелии при разных типах землепользования // Почвоведение. 2023. № 11. С. 1371–1384. https://doi.org/10.31857/S0032180X23600464
- Ерохова А.А., Макаров М.И., Моргун Е.Г., Рыжова И.М. Изменение состава органического вещества дерново-подзолистых почв в результате естественного восстановления леса на пашне // Почвоведение. 2014. № 11. С. 1308–1314. https://doi.org/10.7868/S0032180X14110045
- Жангуров Е.В., Лебедева М.П., Шишков В.А. Минералого-микроморфологическая диагностика особенностей почвообразования северотаежных почв на средне-основных породах Тимана // Почвоведение. 2018. № 11. С. 1372–1383. https://doi.org/10.1134/S0032180X18110102
- История Карелии с древнейших времен до наших дней / Под ред. Кораблевой Н.А. и др. Петрозаводск: Периодика, 2001. 944 с.
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- Красильников П.В. Современная эволюция почв на красноцветных моренах Карелии и продуктах их переотложения // Экология и география почв. Петрозаводск: КарНЦ РАН, 1995. С. 5–17.
- Лебедева И.И., Герасимова М.И. Диагностические горизонты в классификации почв России // Почвоведение. 2012. № 9. С. 923–934.
- Лесовая С.И., Гойло Э.А., Чижикова Н.П. Минералогический состав красноцветных отложений и его влияние на почвообразование в северотаежной подзоне Европейской территории России // Почвоведение. 2005. № 8. С. 1001–1011.
- Медведев П.В., Голубев А.И., Куликова В.С. Вепсий // Онежская палеопротерозойская структура (геология, тектоника, глубинное строение и минерагения). Петрозаводск: КарНЦ РАН, 2011. С. 119–123.
- Минерально-сырьевая база Республики Карелия Неметаллические полезные ископаемые. Подземные воды и лечебные грязи / Под ред. Михайловой В.П., Анимовой В.Н. Петрозаводск: Карелия, 2006. Кн. 2. 356 с.
- Природные комплексы Вепсской волости: особенности, современное состояние, охрана и использование / Под ред. Громцева А.Н. Петрозаводск: КарНЦ РАН, 2005. 278 с.
- Стольникова Е.В., Ананьева Н.Д., Чернова О.В. Микробная биомасса, ее активность и структура в почвах старовозрастных лесов европейской территории России // Почвоведение. 2011. № 4. С. 479–494.
- Телеснина В.М., Ваганов И.Е., Карлсен А.А., Иванова А.Е., Жуков М.А., Лебедев С.М. Особенности морфологии и химических свойств постагрогенных почв южной тайги на легких отложениях (Костромская область) // Почвоведение. 2016. № 1. С. 115–129. https://doi.org/10.7868/S0032180X16010111
- Balesdent J., Basile-Doelsch I., Chadoeuf J., Cornu S., Derrien D., Fekiacova Z., Hatté C. Atmosphere – soil carbon transfer as a function of soil depth. Nature. 2018. V. 559 (7715). P. 599–602. https://doi.org/10.1038/s41586-018-0328-3
- Dawson J.J.C., Smith P. Carbon losses from soil and its consequences for land-use management // Science of The Total Environment. 2007. V. 382 (2–3). P. 165–190. https://doi.org/10.1016/j.scitotenv.2007.03.023
- Deng L., Zhu G.Y., Tang Z.S., Shangguan Z.P. Global patterns of the effects of land-use changes on soil carbon stocks // Global Ecology and Conservation. 2016. V. 5. P. 127–138. https://doi.org/10.1016/j.gecco.2015.12.004
- Downie A.E., Van Zwieten L., Smernik R.J., Morris S., Munroe P.R. Terra Preta Australis: reassessing the carbon storage capacity of temperate soils // Agriculture, Ecosystems and Environment. 2011. V. 140(1–2). P. 137–147. https://doi.org/10.1016/j.agee.2010.11.020
- Garnett T., Appleby M.C., Balmford A., Bateman I.J., Benton T.G., Bloomer P., Burlingame B. et al. Sustainable intensification in agriculture: premises and policies // Science. 2013. V. 341(6141). P. 33–34. https://doi.org/10.1126/science.123448
- Glaser B., Birk J.J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia(terra preta de Índio) // Geochim. Cosmochim. Acta. 2012. V. 82. P. 39–51. https://doi.org/10.1016/j.gca.2010.11.029
- Guo L.B., Gifford R.M. Soil carbon stocks and land use change: a meta-analysis // Global Change Biology. 2002. V. 8(4). P. 345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x
- Hansson K., Olsson B.A., Olsson M., Johansson U., Kleja D.B. Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden // Forest Ecology and Management. 2011. V. 262. P. 522–530. https://doi.org/10.1016/j.foreco.2011.04.021
- Jarmain C., Cummins T., Jovani-Sancho A.J., Nairn T., Premrov A., Reidy B., Renou-Wilson F., Tobin B., Walz K., Wilson D., Byrne K.A. Soil organic carbon stocks by soil group for afforested soils in Ireland // Geoderma Regional. 2023. V. 32. P. e00615. https://doi.org/10.1016/j.geodrs.2023.e00615
- Kogel-Knabner I., Amelung W. Soil organic matter in major pedogenic soil groups // Geoderma. 2021. V. 384. P. 114785. https://doi.org/10.1016/j.geoderma.2020.114785
- Kuznetsov N.B., Kolodyazhnyi S.Yu., Romanyuk T.V., Strashko A.V., Baluev A.S., Terekhov E.N., Mezhelovskaya S.V., Dubensky A.S., Sheshukov V.S. On the time and conditions of formation of the Shoksha quartzite-sandstones of the South Onega Depression based on the new data from isotope geochronology // Geodynamics Tectonophysics. 2023. V. 14(1). P. 0685. https://doi.org/10.5800/ GT-2023-14-1-0685
- Liang Y., Rillig M.C., Chen H.Y.H., Shan R., Ma Z. Soil pH drives the relationship between the vertical distribution of soil microbial biomass and soil organic carbon across terrestrial ecosystems: A global synthesis // Catena. 2024. V. 238. P. 107873. https://doi.org/10.1016/j.catena.2024.107873
- Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.-S. et al. Soil carbon 4 per mille // Geoderma. 2017. V. 292. P. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
- Munsell A. Munsell Soil Color Charts. Revised Washable Edition. Munsell Color. New Windsor. N.Y. 2000.
- Ostle N.J., Levy P.E., Evans C.D., Smith P. UK land use and soil carbon sequestration // Land Use Policy. 2009. V. 26S. P. 274–283. https://doi.org/10.1016/j.landusepol.2009.08.006
- Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L. et al. A large and persistent carbon sink in the world’s forests // Science. 2011. V. 333(6045). P. 988–993. https://doi.org/10.1126/science.1201609
- Rodríguez-Albarracín H.S., Demattê J.A.M., Rosin N.A., Contreras A.E.D., Silvero N.E.Q., Cerri C.E.P., De Sousa Mendes W., Tayebi M. Potential of soil minerals to sequester soil organic carbon // Geoderma. 2023. V. 436. P. 116549. https://doi.org/10.1016/j.geoderma.2023.116549
- Rumpel C. Opportunities and threats of deep soil organic matter storage // Carbon Management. 2014. V. 5. P. 115–117. http://dx.doi.org/10.1080/17583004.2014.912826
- Schiefer J., Lair G.J., Blum W.E.H. Potential and limits of land and soil for sustainable intensification of European agriculture // Agriculture, Ecosystems and Environment. 2016. V. 230. P. 283–293. http://dx.doi.org/10.1016/j.agee.2016.06.021
- Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., et al. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56. https://doi.org/10.1038/nature10386.
- Solomon D., Lehmann J., Fraser J.A., Leach M., Amanor K., Frausin V., Kristiansen S.M., Millimouno D., Fairhead J. Indigenous African soil enrichment as a climate-smart sustainable agriculture alternative // Frontiers in Ecology and the Environment. 2016. V. 14(2). P. 71–76. https://doi.org/10.1002/fee.1226
- Urbanski L., Schad P., Kalbitz K., van Mourik J., Gehrt E., Kögel-Knabner I. Legacy of plaggen agriculture: High soil organic carbon stocks as result from high carbon input and volume increase // Geoderma. 2022. V. 406. P. 115513. https://doi.org/10.1016/j.geoderma.2021.115513
- Wiedner K., Schneeweiß J., Dippold M.A., Glaser B. Anthropogenic Dark Earth in Northern Germany – the nordic analogue to terra preta de Índio in Amazonia // Catena. 2015. V. 132. P. 114–125. https://doi.org/10.1016/j.catena.2014.10.024
- Wiesmeier M., Urbanski L., Hobley E., Lang B., von Lützow M., Marin-Spiotta E., van Wesemael B. et al. Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales // Geoderma. 2019. V. 333. P. 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
- Wiesmeier M., von Lutzow M., Sporlein P., Geuss U., Hangen E., Reischl A., Schilling B., Kogel-Knabner I. Land use effects on organic carbon storage in soils of Bavaria: the importance of soil types // Soil & Tillage Research. 2015. V. 146. P. 296–302. https://doi.org/10.1016/j.still.2014.10.003
- World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports № 106. FAO, Rome.
- Xia Q., Rufty T., Shi W. Soil microbial diversity and composition: Links to soil texture and associated properties // Soil Biology and Biochemistry. 2020. V. 149. P. 107953. https://doi.org/10.1016/j.soilbio.2020.107953
- Xiong X., Grunwald S., Myers D.B., Ross C.W., Harris W.G., Comerford N.B. Interaction effects of climate and land use / land cover change on soil organic carbon sequestration // Science of The Total Environment. 2014. V. 493. P. 974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088
- You M., Zhu-Barker X., Hao X-X., Li L-J. Profile distribution of soil organic carbon and its isotopic value following long term land-use changes // Catena. 2021. V. 207. P. 105623. https://doi.org/10.1016/j.catena.2021.105623
Supplementary files
